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Abstract. We construct a new anticyclotomic Euler system (in the sense of Jetchev–Nekovář–Skinner)
for the Galois representation Vf,χ attached to a newform f of weight 2r ≥ 2 twisted by an anticyclotomic

Hecke character χ. We then show some arithmetic applications of the constructed Euler system, including

new results on the Bloch–Kato conjecture in ranks zero and one, and a divisibility towards the Iwasawa–
Greenberg main conjecture for Vf,χ.

In particular, in the case where the base-change of f to our imaginary quadratic field has root number
+1 and χ has higher weight (which implies that the complex L-function L(Vf,χ, s) vanishes at the center),

our results show that the Bloch–Kato Selmer group of Vf,χ is nonzero, and if a certain distinguished class

κf,χ is nonzero, then the Selmer group is one-dimensional. Such applications to the Bloch–Kato conjecture
for Vf,χ were left wide open by the earlier approaches using Heegner cycles and/or Beilinson–Flach classes.

Our construction is based instead on a generalisation of the Gross–Kudla–Schoen diagonal cycles.
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Introduction

Let f =
∑∞
n=1 anq

n ∈ S2r(Γ0(Nf )) be an elliptic newform of even weight 2r ≥ 2, and let p ∤ 6Nf be a
prime. Let K be an imaginary quadratic field in which p splits. Let L be a number field containing K and
the Fourier coefficients of f , and let P be a prime of L above p at which f is ordinary, i.e. vP(ap) = 0.

Let χ be an anticyclotomic Hecke character of K, and consider the conjugate self-dual GK = Gal(Q/K)-
representation

Vf,χ := V ∨
f (1− r)⊗ χ−1,

where V ∨
f is the contragredient of Deligne’s P-adic Galois representation associated to f .

We prove the following applications to the Bloch–Kato conjecture for Vf,χ. Under mild hypotheses on
f and χ, the nonvanishing of the Rankin–Selberg L-function L(f/K, χ, s) at the center s = r implies that
the associated Bloch–Kato Selmer group is 0; and when this central L-value vanishes, the nonvanishing of
a distinguished class κf,χ implies that the dimension of the associated Bloch–Kato Selmer group is 1. In
addition, we also prove a divisibility in the Iwasawa main conjecture for Vf,χ, both in the definite and in
the indefinite settings. These results are deduced as applications of the main contribution of this paper,
which is the construction of a new anticyclotomic Euler system for Vf,χ. By exploiting the decomposition
of certain triple products, our construction is based on a generalisation of the diagonal cycles introduced
by Gross–Kudla [GK92] and Gross–Schoen [GS95], and studied more recently by Darmon–Rotger and
Bertolini–Seveso–Venerucci (see [BDR+22]).

0.1. Main results. Fix once and for all complex and p-adic embeddings i∞ : Q ↪→ C and ip : Q ↪→ Cp.
Assume that the discriminant DK of K satisfies (DK , Nf ) = 1, and writing Nf = N+N− with N+ (resp.
N−) divisible only by primes that are split (resp. inert) in K, assume that

(sq) N− is squarefree.

Let Γ− be the Galois group of the anticyclotomic Zp-extension of K. We consider anticyclotomic Hecke
characters of K of the form χ = χ0ϕ, with χ0 a ring character such that

(cond) χ0 has conductor cOK with (c, pNf ) = 1,

and ϕ an anticyclotomic Hecke character of K whose p-adic avatar (still denoted ϕ) factors through Γ−.
Denote by ν(N−) the number of prime factors of N−. Under hypotheses (sq) and (cond), the sign ϵ(f, χ)
in the functional equation for L(f/K, χ, s) (relating its values at s and 2r− s) depends only on the global
root number of the base-change of f to K, given by

ϵ(f/K) = (−1)ν(N
−)+1,
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and the infinity type, say (−j, j) with j ∈ Z, of χ. Because L(f/K, χ, s) = L(f/K, χc, s), where χc is the
composition of χ with the action of complex conjugation, without loss of generality we may assume j ≥ 0.
Accordingly, the values of ϵ(f, χ) are as in the following table.

ϵ(f/K) = −1 ϵ(f/K) = +1
0 ≤ j < k/2 −1 +1
j ≥ k/2 +1 −1

0.1.1. The Euler system. Assume that f and K satisfy the following hypotheses:

(ord) f is ordinary at P,

(spl) p = pp̄ splits in K,

with P | p the primes of L/K above p induced by ip, and that

(cn) p ∤ hK , where hK is the class number of K.

For every positive integer n, let K[n] denote the maximal p-subextension of the ring class field of K of
conductor n. Denote by L the set of rational primes ℓ ̸= p split in K. For each ℓ ∈ L, we fix a prime l of K
lying above it, and let N be the set of squarefree products of primes ℓ ∈ L coprime to pNfc (with 1 ∈ N
by convention, corresponding to the empty product). Let O be the ring of integers in the completion LP.

Theorem A (Theorem 2.4.2). Assume (cond), (ord), (spl), and (cn). There exists a family of cohomology
classes {

zf,χ,m,s ∈ H1(K[mps], Tf,χ) | m ∈ N , s ≥ 0
}
,

where Tf,χ is a certain GK-stable O-lattice inside Vf,χ, such that

Norm
K[mps+1]
K[mps] (zf,χ,m,s+1) = zf,χ,m,s

for all s ≥ 0, and for every m ∈ N and ℓ ∈ L with mℓ ∈ N , we have the tame norm relation

Norm
K[mℓps]
K[mps] (zf,χ,mℓ,s) = Pl(Frobl) zf,χ,m,s,

where Pl(X) = det(1− FroblX |V ∨
f,χ(1)), and Frobl is a geometric Frobenius.

The collection of classes of Theorem A defines an anticyclotomic Euler system in the sense of Jetchev–
Nekovář–Skinner [JNS] for the conjugate self-dual representation Vf,χ. Significantly extending Kolyvagin’s
methods, the general theory developed in op. cit. provides a machinery that bounds Selmer groups attached
to conjugate self-dual representations V from the input of a non-trivial anticyclotomic Euler system. The
Selmer group being bounded depends on the local conditions at the primes w | p satisfied by the Euler
system classes, and in this paper we produce in fact two different anticyclotomic Euler systems for Vf,χ,
differing in their local conditions at the primes above p.

To describe this further, recall that by p-ordinarity of f , the Galois representation V ∨
f restricted to a

decomposition group GQp
⊂ GQ fits into a short exact sequence

0→ V ∨,+
f → V ∨

f → V ∨,−
f → 0,

with each V ∨,±
f 1-dimensional over LP, and with the GQp

-action on V ∨,−
f given by the unramified character

sending an arithmetic Frobenius Frob−1
p to αp, the unit root of x2 − apx+ pk−1. Put

V ±
f,χ := V ∨,±

f (1− k/2)⊗ χ−1.

In terms of this, the construction in Theorem 2.4.2 yields in fact:

• An anticyclotomic Euler system {zord,ordf,χ,m,s}m,s with local conditions at the primes w | p given by

H1
ord(K[mps]w, Vf,χ) := ker

(
H1(K[mps]w, Vf,χ)→ H1(K[mps]w, V

−
f,χ)

)
.
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• An anticyclotomic Euler system {zrel,strf,χ,m,s}m,s with local conditions at the primes w | p given by{
H1(K[mps]w, Vf,χ) if w | p,
0 if w | p̄.

Depending on the infinity type of χ, we show that one of these classes always lands in the Bloch–Kato
Selmer group SelBK(K[mps], Vf,χ), namely the class

κf,χ,m,s :=

{
zrel,strf,χ,m,s if j ≥ r,

zord,ordf,χ,m,s if 0 ≤ j < r.

0.1.2. Applications to the Bloch–Kato conjecture in rank 1. Let κP denote the residue field of LP, and let

ρ̄f : GQ → GL2(κP)

be the residual representation associated to f . By p-ordinarity, the restriction ρ̄f |GQp
is reducible, and we

say that ρ̄f is p-distinguished when the semi-simplification of ρ̄f |GQp
is non-scalar. Put

κf,χ := κf,χ,1,0 ∈ SelBK(K,Vf,χ),

using thatK[1] = K as a consequence of (cn). From the general results of [JNS] applied to the construction
of Theorem A we deduce in particular the following result.

Theorem B (Theorem 5.7.1). Under the hypotheses of Theorem A, assume in addition that

• (sq) holds;
• ρ̄f is absolutely irreducible and p-distinguished;
• p > 2r − 2;
• f is not of CM-type.

Assume also that
ϵ(f/K) = +1 and j ≥ r,

which implies L(f/K, χ, r) = 0. Then

dimLP
SelBK(K,Vf,χ) ≥ 1.

Moreover, if the class κf,χ is nonzero, then

SelBK(K,Vf,χ) = LP · κf,χ.

By the Gross–Zagier formula for the modified diagonal cycles introduced in [GK92, GS95] (a special case
of the arithmetic Gan–Gross–Prasad conjecture for SO(3)× SO(4)) proved by Yuan–Zhang–Zhang [YZZ]
in certain cases, the non-triviality of κf,χ is expected to be governed by the nonvanishing of L′(f/K, χ, r),
and hence Theorem B yields evidence towards the Bloch–Kato conjecture for Vf,χ in analytic rank 1.

Our methods also yield an analogue of Theorem B in the “indefinite case” ϵ(f/K) = −1 and 0 ≤ j < r
(see Theorem 6.7.1), but we note that in this case such result can also be obtained from the Euler system
of (generalised) Heegner cycles [Nek92, CH18a].

0.1.3. Applications to the Bloch–Kato conjecture in rank 0. We now turn our attention to the cases where
ϵ(f, χ) = +1, so the central value L(f/K, χ, r) is expected to be generically nonzero. Put

κ′f,χ,m,r :=

{
zord,ordf,χ,m,r if j ≥ r,

zrel,strf,χ,m,r if 0 ≤ j < r,
κ′f,χ := κ′f,χ,1,0.

Building on the explicit reciprocity law for diagonal cycles by Bertolini–Seveso–Venerucci [BSV22], we
show the equivalence

κ′f,χ ∈ SelBK(K,Vf,χ) ⇐⇒ L(f/K, χ, r) = 0.

Hence when L(f/K, χ, r) ̸= 0, the classes κ′f,χ provide non-trivial annihilators of classes in SelBK(K,Vf,χ)

via global duality. Together with the general results of [JNS] applied to the construction of Theorem A
extending κ′f,χ, this leads in particular to the following cases of the Bloch–Kato conjecture for Vf,χ.
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Theorem C (Theorem 5.5.1). Under the hypotheses of Theorem A, assume in addition that

• (sq) holds;
• ρ̄f is absolutely irreducible and p-distinguished;
• p > 2r − 2;
• f is not of CM-type.

Assume also that

ϵ(f/K) = +1 and 0 ≤ j < r,

which implies ϵ(f, χ) = +1. Then

L(f/K, χ, r) ̸= 0 =⇒ SelBK(K,Vf,χ) = 0,

and hence the Bloch–Kato conjecture holds in this case.

We also obtain an analogue of Theorem C for ϵ(f/K) = −1 and j ≥ r (see Theorem 6.5.1), but in these
cases the result was previously known using generalised Heegner cycles [CH18a]. Finally, we note that our
results also include the proof of a divisibility in the anticyclotomic Iwasawa main conjecture for Vf,χ, both
in the definite and in the indefinite settings, giving in particular a new proof of the main result of [BD05]
(see Theorem5.6.1) dispensing with their “level-raising” ramification hypotheses.

0.2. Relation to previous works. Starting with the landmark results by Gross–Zagier and Kolyvagin
[GZ86, Kol88] (see also [BD90]), and followed by their vast generalisations by Zhang [Zha97], Tian [Tia03],
Nekovář [Nek07], Yuan–Zhang–Zhang [YZZ13] and others, the Euler system of Heegner points and Heegner
cycles has been a key ingredient in the study of the arithmetic of Vf,χ under the Heegner hypothesis

ϵ(f/K) = −1.
Classical Heegner cycles account for the cases where the anticyclotomic character χ has finite order (i.e.,
j = 0), but using their new variant by Bertolini–Darmon–Prasanna [BDP13], one obtains classes controlling
the arithmetic of SelBK(K,Vf,χ) in the following cases:

(1st quadrant) ϵ(f/K) = −1, 0 ≤ j < r.

In another major advance, Bertolini–Darmon [BD05] exploited congruences between modular forms on
different quaternion algebras and the Cerednik–Drinfeld theory of interchange of invariants to realise the
Galois representation (on finite quotients of) Tf,χ in the torsion of the Jacobian of certain Shimura curves.
This allowed them to still use the Heegner point construction in situations where ϵ(f/K) = +1. Together
with the extension to higher weights by Chida–Hsieh [CH15], these methods yielded a proof of many cases
of the Bloch–Kato conjecture in analytic rank 0 when

(2nd quadrant) ϵ(f/K) = +1, j = 0

under certain ‘level-raising’ hypotheses. More recently, the Euler system of Beilinson–Flach elements con-
structed by Lei–Loeffler–Zerbes [LLZ14, LLZ15] and Kings–Loeffler–Zerbes [KLZ17, KLZ20] (inspired in
part by earlier results of Bertolini–Darmon–Rotger [BDR15a, BDR15b]) provided an alternative approach
to similar rank 0 results (among other applications) under different mild hypotheses.

On the other hand, exploiting the variation of Heegner cycles in p-adic families, the first-named author
and Hsieh [CH18a, Cas20] (see also related work by Magrone [Mag22] and Kobayashi [Kob23]), obtained
results on the Bloch–Kato conjecture for Vf,χ in rank 0 in the cases

(3rd quadrant) ϵ(f/K) = −1, j ≥ r.
Contrastingly, in the cases where

(4th quadrant) ϵ(f/K) = +1, j ≥ r,
the conjectures of Beilinson–Bloch and Bloch–Kato predict the existence of nonzero classes in SelBK(K,Vf,χ)
coming from geometry (since ϵ(f, χ) = −1 and therefore L(f/K, χ, r) = 0), but the construction of such
classes seems to fall outside of all the aforementioned methods.
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The ‘degenerate’ diagonal cycle Euler system constructed in this paper allows us to fill this gap, yielding
new evidence towards the Bloch–Kato conjecture for Vf,χ in analytic rank 1 in this case, while also providing
a new approach to the aforementioned results in the other cases:

ϵ(f/K) = −1 ϵ(f/K) = +1
1st quadrant 2nd quadrant

0 ≤ j < r [Kol88], [BD90], [Tia03], [Nek07], etc. [BD05], [CH15], [KLZ17], [KLZ17], etc.
Theorem 6.7.1 Theorem 5.5.1
3rd quadrant 4th quadrant

j ≥ r [CH18a], [Cas20], [Mag22], [Kob23], etc. −
Theorem 6.5.1 Theorem 5.7.1

To obtain our anticyclotomic Euler system classes, we exploit diagonal cycles attached to triple products
of modular forms with two of the factors having CM by K. This setting is also considered in the work of
the first-named author with Hsieh [CH22] on the conjectures of Darmon–Rotger [DR16] in the ‘adjoint CM
case’. The method of construction in this paper has recently been adapted by the second-named author
[Do24] to the case where two of the factors have CM by different imaginary quadratic fields, resulting in
an anticyclotomic Euler system for modular forms based-changed to a biquadratic CM field, together with
results on the Bloch–Kato conjecture, and a divisibility towards the Iwasawa–Greenberg main conjecture.

In future work, we intend to generalise our construction to totally real fields, a setting in which one finds
even more cases where the arithmetic of Rankin–Selberg convolutions falls outside the scope of Heegner
cycles and/or Beilinson–Flach classes.

0.3. Acknowledgements. The present article grew out of the second-named author’s PhD thesis [Do22],
supervised by Christopher Skinner. We heartily thank him for inspiring this collaboration, his guidance,
and optimism. We would also like to thank Raúl Alonso, Haruzo Hida, Kartik Prasanna, Óscar Rivero,
and Romyar Sharifi for helpful exchanges related to various aspects of this work, and the anomymous
referee for a very careful reading of the paper, whose comments and suggestions helped us to signficantly
improve the exposition.

During the preparation of this paper, the first-named author was partially supported by the NSF grants
DMS-1946136, DMS-2101458, and DMS-2401321.

Part 1. The Euler system

1. Preliminaries

1.1. Modular curves and Hecke operators. We give a precise description of the modular curves and
Hecke operators that will appear in our construction. The main references for this section are [Kat04, §2],
[BSV22, §2], and [ACR23, §2], where more details can be found.

1.1.1. Modular curves. Let M,N, u, v be positive integers such that M + N ≥ 5. Define Y (M,N) to be
the affine modular curve over Z[1/MN ] representing the functor

S 7→

 isomorphism classes of triples (E,P,Q) where E is an elliptic curve over S,
P , Q are sections of E over S such that M · P = N ·Q = 0; and the map
Z/MZ× Z/NZ→ E, sending (a, b) 7→ a · P + b ·Q is injective


for Z[1/MN ]-schemes S. More generally, define the affine modular curve Y (M(u), N(v)) over Z[1/MNuv]
representing the functor

S 7→


isomorphism classes of quintuples (E,P,Q,C,D) where (E,P,Q) is as above,
P ∈ C is a cyclic subgroup of E of order Mu,
Q ∈ D is a cyclic subgroup of E of order Nv such that
C is complementary to Q and D is complementary to P


for Z[1/MNuv]-schemes S. When either u = 1 or v = 1, we drop them from the notation.
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Let H be the Poincaré upper half-plane and define the modular group:

Γ(M(u), N(v)) =

{
γ ∈ SL2(Z) such that γ ≡

(
1 0
0 1

)
mod

(
M Mu
Nv N

)}
.

The Riemann surface Y (M,N)(C) admits a complex uniformisation:

(Z/MZ)× × Γ(M,N)\H ∼−→ Y (M,N)(C)
(m, z) 7→ (C/Z+ Zz,mz/M, 1/N),

and similarly for Y (M(u), N(v))(C).
Let ℓ be a prime. There is an isomorphism of Z[1/ℓMN ]-schemes:

φℓ : Y (M,N(ℓ)) → Y (M(ℓ), N)
(E,P,Q,C) 7→ (E/NC,P +NC, ℓ−1(Q) ∩ C +NC, (ℓ−1(Z · P +NC)/NC)),

which under the complex uniformisation is induced by the map (m, z) 7→ (m, ℓ · z).

1.1.2. Degeneracy maps. We have the natural degeneracy maps

Y (M,Nℓ)
µℓ // Y (M,N(ℓ))

φℓ

��

νℓ // Y (M,N)

Y (Mℓ,N)
µ̌ℓ // Y (M(ℓ), N)

ν̌ℓ // Y (M,N),

where µℓ(E,P,Q) = (E,P, ℓ ·Q,Z ·Q), νℓ(E,P,Q,C) = (E,P,Q), and µ̌ℓ, ν̌ℓ are defined similarly. Put

pr1 := νℓ ◦ µℓ : Y (M,Nℓ)→ Y (M,N),

(E,P,Q) 7→ (E,P, ℓ ·Q)

and

prℓ := ν̌ℓ ◦ φℓ ◦ µℓ : Y (M,Nℓ)→ Y (M,N)

(E,P,Q) 7→ (E/NZ ·Q,P +NZ ·Q,Q+NZ ·Q).

On the complex upper half planeH, the map pr1 (resp. prℓ) is induced by the identity (resp. multiplication
by ℓ). Moreover, µℓ, µ̌ℓ, νℓ, ν̌ℓ,pr1,prℓ are all finite étale morphisms of Z[1/MNℓ]-schemes.

1.1.3. Relative Tate modules and Hecke operators. Let S be a Z[1/MNℓp]-scheme where p is a fixed prime.
For each Z[1/MNℓp]-scheme X, denote the base change XS = X ×Z[1/MNℓp] S. Notate A = AX to be
either the locally constant sheaf Z/pmZ(j) or the locally constant p-adic sheaf Zp(j) on Xét for some fixed
j ∈ Z and m ≥ 1.

For the ease of notation, we may write · for M(u), N(v) (i.e. Y (·) = Y (M(u), N(v))). Denote by E(·)
the universal elliptic curve over Y (·). Then one obtains a natural degree ℓ isogeny of universal elliptic
curves under the base change by φ∗

ℓE(M(ℓ), N)→ Y (M,N(ℓ)):

λℓ : E(M,N(ℓ))→ φ∗
ℓ (E(M(ℓ), N).

Denote by v· : E(·)S → Y (·)S the structure map. We also use νℓ, ν̌ℓ and λℓ for the base change to S of the
corresponding degeneracy maps. Set:

T·(A) = R1v·∗Zp(1)⊗Zp A and T ∗
· (A) = HomA(T·(A), A)

where Rqv·∗ is the q-th right derivative of v·∗ : E(·)ét → Y (·)ét. When A = Zp, this gives the relative Tate
module of the universal elliptic curve, in which case we will drop the Zp from the notation.

Fix an integer r ≥ 0. The (perfect) cup product pairing combined with the relative trace

T· ⊗Zp T· → R2v·∗Zp(2) ∼= Zp(1)

allows us to identify T·(−1) with T ∗
· . Put

L·,r(A) = TSymr
AT·(A), S·,r(A) = Symr

AT ∗
· (A),
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where TSymr
RM is the R-submodule of the symmetric tensors inM⊗r, Symr

RM is the maximal symmetric
quotient of M⊗r, and M is any finite free module over a profinite Zp-algebra R. When the level is clear,
we shall simplify the notations, e.g. writing:

(1.1) Lr(A) = LM(u),N(v),r(A), Lr = Lr(Zp), Sr(A) = SM(u),N(v),r(A), Sr = Sr(Zp).

Let F r
· be either L·,r(A) or S·,r(A). Then there are natural isomorphisms of sheaves

ν∗ℓ (F
r
M,N ) ∼= F r

M,N(ℓ), ν̌∗ℓ (F
r
M,N ),∼= F r

M(ℓ),N ,

and these induce pullback maps

Hi
ét(Y (M,N(ℓ))S ,F

r
M,N(ℓ))

ν∗
ℓ←− Hi

ét(Y (M,N)S ,F
r
M,N )

ν̌∗
ℓ−→ Hi

ét(Y (M(ℓ), N)S ,F
r
M(ℓ),N )

and traces

Hi
ét(Y (M,N(ℓ))S ,F

r
M,N(ℓ))

νℓ∗−−→ Hi
ét(Y (M,N)S ,F

r
M,N )

ν̌ℓ∗←−− Hi
ét(Y (M(ℓ), N)S ,F

r
M(ℓ),N ).

The finite étale isogeny λℓ induces morphisms

λℓ∗ : F r
M,N(ℓ) → φ∗

ℓ (F
r
M(ℓ),N ), λ∗ℓ : φ

∗
ℓ (F

r
M(ℓ),N )→ F r

M,N(ℓ)

and this allows us to define a pushforward

Φℓ∗ := φℓ∗ ◦ λℓ∗ : Hi
ét(Y (M,N(ℓ))S ,F

r
M,N(ℓ))→ Hi

ét(Y (M(ℓ), N)S ,F
r
M(ℓ),N )

and a pullback

Φ∗
ℓ := λ∗ℓ ◦ φ∗

ℓ : H
i
ét(Y (M(ℓ), N)S ,F

r
M(ℓ),N )→ Hi

ét(Y (M,N(ℓ))S ,F
r
M,N(ℓ)).

The Hecke operator Tℓ and the dual Hecke operator T ′
ℓ acting on Hi

ét(Y (M,N)S ,F
r
M,N ) are defined by

Tℓ := ν̌ℓ∗ ◦ Φℓ∗ ◦ ν∗ℓ , T ′
ℓ := νℓ∗ ◦ Φ∗

ℓ ◦ ν̌∗ℓ .

Remark 1.1.1. Note the relations

deg(µℓ)Tℓ = prℓ∗ ◦ pr∗1, deg(µℓ)T
′
ℓ = pr1∗ ◦ pr∗ℓ ,

as it follows immediately from the definitions.

For d ∈ (Z/MNZ)∗, the diamond operator ⟨d⟩ on Y (·) is defined in terms of moduli by

(E,P,Q,C,D) 7→ (E, d−1 · P, d ·Q,C,D).

There is also a unique diamond operator ⟨d⟩ on the universal elliptic curve making the following diagram
cartesian:

E(·)S
v·

��

⟨d⟩ // E(·)S
v·

��
Y (·)S

⟨d⟩ // Y (·)S ,
and this induces automorphisms ⟨d⟩ = ⟨d⟩∗ and ⟨d⟩′ = ⟨d⟩∗ on Hi

ét(Y (·)S ,F·).
For any profinite Zp-algebra R and finite free R-moduleM , the evaluation map induces a perfect pairing

TSymr
RM ⊗R Symr

RM
∗ → R,

where M∗ = HomR(M,Zp). This gives a perfect pairing Lr ⊗Zp Sr → Zp, and therefore a cup product

⟨·, ·⟩ : H1
ét(Y (·)Q,L r(1))⊗Zp H

1
ét,c(Y (·)Q,S r)→ H2

ét(Y (·)Q,Zp(1)) ∼= Zp,

which is perfect after inverting p. Moreover, the Hecke operators Tℓ, T
′
ℓ , ⟨d⟩, ⟨d⟩′ induce endomorphisms on

the compactly supported cohomology groups H1
ét,c(Y (·)Q,S r), and by construction, (Tℓ, T

′
ℓ) and (⟨d⟩, ⟨d⟩′)

are adjoint pairs under ⟨·, ·⟩. The Eichler–Shimura isomorphism [Shi94]

H1
ét(Y1(N)Q,L r)⊗Zp C

∼=Mr+2(N,C)⊕ Sr+2(N,C)

commutes with the action of the Hecke operators on both sides.
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1.2. Galois representations associated to newforms. Let f =
∑∞
n=1 anq

n be a normalised newform of

weight k ≥ 2, level Γ1(Nf ), and nebentype χf . Let p ∤ Nf be an odd prime. Fix embeddings i∞ : Q ↪→ C,

ip : Q ↪→ Qp, and let L/Q be a finite extension containing all values i−1
∞ (an) and i−1

∞ ◦ χf . Let P be
the prime of L above p with respect to ip. Then Eichler–Shimura and Deligne construct a p-adic Galois
representation associated to f :

ρf = ρf,P : GQ → GL2(LP)

which is unramified outside pNf , and characterised by the property for all finite primes ℓ ∤ pNf ,

trace(ρf (Frobℓ)) = ip(aℓ), det(ρf (Frobℓ)) = ip(χf (ℓ)l
k−1),

where Frobℓ is a geometric Frobenius. Moreover, ρf,P is known to be irreducible [Rib77], hence absolutely
irreducible since the image of the complex conjugation has eigenvalues 1 and −1.

1.2.1. Geometric realisations. The representation ρf,P can be realised geometrically as the largest subspace
Vf of

H1
ét,c(Y1(Nf )Q,S k−2)⊗ LP

on which Tℓ acts as multiplication by aℓ for all ℓ ∤ Nfp and ⟨d⟩ = ⟨d⟩∗ acts as multiplication by χf (d) for
all d ∈ (Z/NfZ)

×. If N is any multiple of Nf , then the above subspace with Nf replaced by N gives rise
to a representation Vf (N) isomorphic (non-canonically) to a finite number of copies of Vf .

The dual V ∨
f = Hom(Vf , LP) can be interpreted as the maximal quotient of

H1
ét(Y1(Nf )Q,L k−2(1))⊗ LP

on which the dual Hecke operator T ′
ℓ acts as multiplication by aℓ for all ℓ ∤ Nfp and ⟨d⟩′ = ⟨d⟩∗ acts as

multiplication by χf (d) for all d ∈ (Z/NfZ)
×.

Let O be the ring of integers of LP. In this paper we shall be mostly working with V ∨
f and the GQ-stable

O-lattice T∨
f ⊂ V ∨

f defined as the image of H1
ét(Y1(Nf )Q,L k−2(1))⊗O in V ∨

f .

1.2.2. The p-ordinary case. If f is ordinary at p, i.e. ip(ap) ∈ O×, then the restriction of Vf to GQp
⊂ GQ

is reducible, fitting into an exact sequence of LP[GQp
]-modules

0→ V +
f → Vf → V −

f → 0

with dimLP
V ±
f = 1, and with GQp

-action on the subspace V +
f given by the unramified character sending

Frobp to αp, the unit root of x2 − apx+ χf (p)p
k−1. By duality, we also obtain an exact sequence for V ∨

f

restricted to GQp

(1.2) 0→ V ∨,+
f → V ∨

f → V ∨,−
f → 0

with V ∨,+
f ≃ (V −

f )∨(1− k)(χ−1
f ), and with the GQp

-action on the quotient V ∨,−
f given by the unramified

character sending arithmetic Frobenius Frob−1
p to αp.

1.3. Patched CM Hecke modules. In this section, after explaining our conventions on Hecke characters,
we recall the construction of certain patched CM Hecke modules from [LLZ15, §5.2].

1.3.1. Hecke characters and theta series. Let K be an imaginary quadratic field of discriminant −DK < 0
in which p = pp̄ splits, with p the prime above p induced by ip.

We say that a Hecke character ψ : A×
K/K

× → C× has infinity type (a, b) ∈ Z2 if ψ∞(x∞) = xa∞x̄
b
∞ for all

x∞ ∈ K ⊗Q R ∼= C under the identification induced by i∞. Then the character sending x 7→ ψ(x)x−a∞ x̄−b∞
is a ray class character, hence it takes value in a finite extension L/K. For P | p the prime of L above p
induced by ip, we define the p-adic avatar ψP : GK → L×

P of ψ as follows. Let recK : A×
K/K → Gab

K be the

geometrically normalised Artin reciprocity map. For g ∈ GK , we take x ∈ A×
K such that recK(x) = g|Kab

and define
ψP(g) = ip ◦ i−1

∞ (ψ(x)x−a∞ x̄−b∞ )xapx
b
p̄.

Since there should be no confusion, in the following we shall also use ψ to denote its p-adic avatar.
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Let ψ be a Hecke character of K of infinity type (−1, 0), conductor dividing f, and with x 7→ ψ(x)x∞
taking values in a finite extension L/K. Viewing ψ as an L-valued character on the group of fractional
ideals of K coprime to f, the theta series attached to ψ is

θψ =
∑

(a,f)=1

ψ(a)qNK/Q(a) ∈ S2(Γ1(Nψ), χψϵK)

where Nψ = NK/Q(f)DK , χψ is the unique Dirichlet character modulo NK/Q(f) such that ψ((n)) = nχψ(n)
for all n ∈ Z with (n,NK/Q(f)) = 1, and ϵK is the quadratic Dirichlet character attached to K/Q. The
cuspform θψ is new of level Nψ if f is the exact conductor of ψ, and its p-adic GQ-representation satisfies

Vθψ
∼= IndQKLP(ψ), V ∨

θψ
∼= IndQKLP(ψ−1).

1.3.2. Hecke algebras and norm maps. Let n ⊂ OK be an ideal divisible by f. Put N = NK/Q(n)DK . Let
Kn be the ray class field of K with conductor n, and Hn = Gal(Kn/K) be the ray class group of K modulo
n. For an ideal k of K coprime to n, let [k] be the class of k in Hn.

We denote by K(n) the largest p-extension of K contained in Kn, so Gal(K(n)/K) ∼= H
(p)
n , where H

(p)
n

is the largest p-power quotient of Hn.

Proposition 1.3.1 ([LLZ15, Prop. 3.2.1]). Let T′(N) be the subalgebra of EndZ(H
1(Y1(N)(C),Z)) gen-

erated by ⟨d⟩′ and T ′
ℓ for all primes ℓ. There exists a homomorphism ϕn : T′(N)→ O[Hn] defined by

ϕn(T
′
ℓ) =

∑
l

[l]ψ(l),

ϕn(⟨d⟩′) = χψ(d)ϵK(d)[(d)],

where the sum is over the ideals l ⊂ OK with l ∤ n and NK/Q(l) = ℓ.

For n′ = nl, with l a prime, put N ′ = NK/Q(n′)DK . As in [LLZ15, §3.3], we consider the norm maps

N n′

n : O[H(p)
n′ ]⊗T′(N ′)⊗Zp,ϕn′ H

1
ét(Y1(N

′)Q,Zp(1))→ O[H
(p)
n ]⊗T′(N)⊗Zp,ϕn

H1
ét(Y1(N)Q,Zp(1))

defined by the following formulae:

• If l | n then

N n′

n = 1⊗ pr1∗;

• If l ∤ n is split or ramified in K, then

N n′

n = 1⊗ pr1∗ −
ψ(l)[l]

ℓ
⊗ prℓ∗;

• If l ∤ n is inert in K, say l = (ℓ), then

N n′

n = 1⊗ pr1∗ −
ψ(l)[l]

ℓ2
⊗ prℓℓ∗,

where prℓℓ : Y (N ′)→ Y (N) denotes the degeneracy map induced by z 7→ ℓ2z, for z on the complex
upper half plane H.

By composition, the definition of N n′

n is extended to any pair of ideals n | n′.

1.3.3. Patching. Note that since p splits in K, the restriction Vθψ |GQp
is reducible.

Definition 1.3.2. We say that ψ is p-distinguished if the residual representation ρ̄θψ is such that ρ̄θψ |GQp

has non-scalar semi-simplification. And we say that (ψ, f) satisfies Condition ♠ is the following hold:

• ψ is p-distinghished;
• if p | f then p̄ ∤ f.
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It follows from the proof of [LLZ15, Prop. 5.1.2] that if (ψ, f) satisfies Condition ♠, then for any ideal
n ⊂ OK divisible by f and p and with (n, p̄) = 1, the maximal ideal of T′(N) defined by the kernel of the
composite map

T′(N)
ϕn−→ O[Hn]

aug−→ O → O/P,
where ϕn is the map from Proposition 1.3.1, is non-Eisenstein, P-ordinary, and p-distinguished in the sense
of Definitions 4.1.2 and 4.3.3 of [LLZ15]. Through its use in [op. cit., Prop. 5.2.5], this condition is to allow
f and m to be possibly divisible by p in the following result.

Theorem 1.3.3. Let A(p̄) be the set of ideals m ⊂ OK with p̄ ∤ m, and put

A :=

{
A(p̄) if (ψ, f) satisfies Condition ♠,

{m ∈ A(p̄) : p ∤ m} otherwise,

and Af = {fm : m ∈ A}. Then there is a family of GQ-equivariant isomorphisms of O[H(p)
n ]-modules

νn : O[H(p)
n ]⊗T′(N)⊗Zp,ϕn

H1
ét(Y1(N)Q,Zp(1))

∼=−→ IndQK(n)O(ψ
−1
P )

indexed by n ∈ Af, such that for any n, n′ ∈ Af with n | n′ the following diagram commutes:

O[H(p)
n′ ]⊗T′(N ′)⊗Zp,ϕn′ H

1
ét(Y1(N

′)Q,Zp(1))

Nn′
n

��

νn′

∼=
// IndQK(n′)O(ψ

−1
P )

Normn′
n

��
O[H(p)

n ]⊗T′(N)⊗Zp,ϕn
H1

ét(Y1(N)Q,Zp(1))
νn
∼=
// IndQK(n)O(ψ

−1
P ),

where Normn′

n is the natural norm map.

Proof. This is a reformulation of Corollary 5.2.6 in [LLZ15] in the case where p splits in K. □

1.4. Diagonal classes. We sketch the construction of the diagonal classes in the triple product of modular
curves Y1(N) using classical invariant theory, following Section 3 in [BSV22].

With the notations of §1.1.3, we put Y1(N) = Y1(N)Q, and let E1(N) = E1(N)Q denote the universal
elliptic curve over Y1(N), together with the structural map v : E1(N) → Y1(N). Let T = R1v∗Zp(1) be
the relative Tate module of the universal elliptic curve, and let T ∗ = HomZp(T ,Zp) be its dual. The cup
product pairing combined with the relative trace

T ⊗Zp T → R2v∗Zp(2) ∼= Zp(1)

gives a perfect relative Weil pairing

⟨−,−⟩E1(N)p∞ : T ⊗Zp T → Zp(1),

which allows T (−1) to be identified with T ∗.
For a fixed geometric point η : Spec(Q)→ Y1(N), denote by Gη = πét

1 (Y1(N), η) the fundamental group
of Y1(N) with base point η. The stalk of T at η, denoted Tη, is a free Zp-module of rank 2, equipped
with a continuous action of Gη. Fix a choice of Zp-module isomorphism ζ : Tη

∼= Zp ⊕ Zp such that

⟨x, y⟩E1(N)p∞ = ζ(x) ∧ ζ(y) (where we identify
∧2

Z2
p with Zp via (1, 0) ∧ (0, 1) = 1). One then obtains a

continuous group homomorphism:

ρη : Gη → AutZp(Tη) ∼= GL2(Zp).

By [FK88, Prop. A I.8], the category of locally constant p-adic sheaves on Y1(N)ét is equivalent to the
category of p-adic representations of Gη via F 7→ Fη. Using ρη, one can associate with every continuous
representation of GL2(Zp) on a free finite Zp-moduleM a smooth sheafM ét on Y1(N) such thatM ét

η =M .
Let Si(A) be the set of 2-variable homogeneous polynomials of degree i in A[x1, x2] equipped with the

action of GL2(Zp) by gP (x1, x2) = P ((x1, x2) · g) for all g ∈ GL2(Zp) and P ∈ Si(A). Its A-linear dual
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Li(A) is also equipped with a GL2(Zp)-action by gτ(P (x1, x2)) = τ(g−1P (x1, x2)) for all g ∈ GL2(Zp),
P ∈ Si(A), and τ ∈ Li(A). As sheaves on Y1(N)Q, one has

Li(A)
ét = L i(A) and Si(A)

ét = S i(A).

Hence Tη
∼= L1(Zp) and Zp(1)η ∼=

∧2 Tη
∼= det−1. This implies that for any j ∈ Z, and any p-adic

representation M of GL2(Zp):

(1.3) H0(GL2(Zp),M ⊗ det−j) ↪→ H0(Gη,M ⊗ det−j) ∼= H0
ét(Y1(N),M ét(j)).

Assumption 1.1. Let r = (r1, r2, r3) be such that ri ∈ Z≥0, (r1 + r2 + r3)/2 = r ∈ Z≥0, and ri+ rj ≥ rk
for all permutations (i, j, k) of (1, 2, 3). We call this a balanced triple.

Under the Assumption 1.1, let

Sr = Sr1(Zp)⊗Zp Sr2(Zp)⊗Zp Sr3(Zp)

with its natural GL2(Zp)-representation from above, and let

S r = S ét
r = S r1(Zp)⊗Zp S r2(Zp)⊗Zp S r3(Zp).

We identify Sr with the module of 6-variable polynomials Zp[x1, x2, y1, y2, z1, z2] which are homogeneous
of degree r1, r2, and r3 in the variables (x1, x2), (y1, y2), and (z1, z2) respectively. By the Clebsch–Gordan
decomposition of classical invariant theory, the following is a GL2(Zp)-invariant of Sr ⊗ det−r:

DetrN := det

(
x1 x2
y1 y2

)r−r3
det

(
x1 x2
z1 z2

)r−r2
det

(
y1 y2
z1 z2

)r−r1
,

i.e. DetrN ∈ H0(GL2(Zp), Sr ⊗ det−r); we denote its image under (1.3) as

(1.4) DetrN ∈ H0
ét(Y1(N),S r(r)).

Let pj : Y1(N)3 → Y1(N) for j ∈ {1, 2, 3} be the natural projections and denote

S [r] := p∗1 S r1(Zp)⊗Zp p
∗
2 S r2(Zp)⊗Zp p

∗
3 S r3(Zp),

and

WN,r := H3
ét(Y1(N)3

Q
,S [r](r + 2)), WN,r = WN,r ⊗Qp.

Because Y1(N)Q is a smooth affine curve over Q, we have H4
ét(Y1(N)3

Q
,S [r](r + 2)) = 0. Hence by the

Hochschild–Serre spectral sequence,

Hp(Q, Hq
ét(Y1(N)3

Q
,S [r](r + 2))) =⇒ Hp+q

ét (Y1(N)3
Q
,S [r](r + 2))

one obtains

HS : H4
ét(Y1(N)3,S [r](r + 2))→ H1(Q, WN,r).

If we let d : Y1(N)→ Y1(N)3 be the diagonal embedding, then there is a natural isomorphism d∗ S [r]
∼= S r

of smooth sheaves on Y1(N)ét. As d is an embedding of codimension 2, there is a pushforward map

d∗ : H0
ét(Y1(N),S r(r))→ H4

ét(Y1(N)3,S r(r + 2)),

and we can consider the class

(HS ◦ d∗)(DetrN ) ∈ H1(Q, WN,r).

Dually, by the bilinear form det∗ : Li(Zp) ⊗Zp Li(Zp) → Zp ⊗ det−i defined by det∗(τ ⊗ σ) = τ ⊗
σ((x1y2 − x2y1)i) that becomes perfect after inverting p, we obtain an isomorphism of GL2(Zp)-modules

(1.5) si : Si(Qp) ∼= Li(Qp)⊗ deti,

and so si : S i(Qp) ∼= L i(Qp)⊗Zp Zp(−i) by the above equivalence of categories. We similarly define the

sheaves L r on Y1(N) and L [r] on Y1(N)3, and set

VN,r := H3
ét(Y1(N)3

Q
,L [r](2− r)), VN,r = VN,r ⊗Qp.
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Let sr = sr1 ⊗ sr2 ⊗ sr3 , which gives an isomorphism WN,r → VN,r, and finally as in [BSV22] put

(1.6) κN,r := (sr∗ ◦ HS ◦ d∗)(DetrN ) ∈ H1(Q, VN,r).

As explained in detail in [loc. cit., §3.2], the class κN,r is closely related to the p-adic étale Abel–Jacobi
image of the generalised Gross–Kudla–Schoen diagonal cycles on Kuga–Sato varieties studied in [DR14].

Proposition 1.4.1. For a prime number ℓ and a positive integer m, if (mℓ,N) = 1 then

(pri∗,prj∗,prk∗)κNmℓ,r = (⋆)κNm,r

where
(i, j, k) ⋆
(ℓ, 1, 1) (ℓ− 1)(Tℓ, 1, 1)
(1, ℓ, 1) (ℓ− 1)(1, Tℓ, 1)
(1, 1, ℓ) (ℓ− 1)(1, 1, Tℓ)
(1, ℓ, ℓ) ℓr−r1(ℓ− 1)(T ′

ℓ , 1, 1)
(ℓ, 1, ℓ) ℓr−r2(ℓ− 1)(1, T ′

ℓ , 1)
(ℓ, ℓ, 1) ℓr−r3(ℓ− 1)(1, 1, T ′

ℓ)

If (ℓ,m) = 1 then we also have

(i, j, k) ⋆
(1, 1, 1) (ℓ2 − 1)
(ℓ, ℓ, ℓ) (ℓ2 − 1)ℓr

Proof. See equations (174) and (176) in [BSV22]. (The proof of the above relations in op. cit. is given for
ℓ = p, but the same argument applies for any prime ℓ as above.) □

2. Main theorems

In this section, for a newform f ∈ S2r(Γ0(Nf )) of weight 2r ≥ 2 and a family of anticyclotomic Hecke
characters χ of K, we construct a family of cohomology classes for the conjugate self-dual representation

Vf,χ := V ∨
f (1− r)⊗ χ−1

defined over ring class extensions of K, and prove that they satisfy the Euler system norm relations.
The construction builds on the results from [BSV22] and [LLZ15] recalled in the preceding section, and

is done in two steps: we consider (suitable modifications of) diagonal classes attached to triples (f, θψ1
, θψ2

)
consisting of our fixed newform f and a pair of theta series θψ1 , θψ2 attached to Hecke characters ψ1, ψ2

of K satisfying the self-duality condition
χψ1

χψ2
= 1,

and first give the construction in the case where (f, θψ1
, θψ2

) have weights (2, 2, 2), resulting in the con-
struction of classes

zf,ψ,ψ2,m ∈ H1(K[m], Tf,ψ1ψ1N−1), czf,ψ,ψ2,m ∈ H1(K[m], Tf,ψ1ψc
2N

−1),

where ψc
2 is the composition of ψ2 with the action of the non-trivial automorphism of K/Q, for which we

prove the tame norm relations (see Theorem 2.2.6 and Corollary 2.3.1).
Replacing (θψ1 , θψ2) by a pair of CM Hida families (θξ1(Z1),θξ2(Z2)) attached to ray class characters

ξ1, ξ2 of K satisfying χξ1χξ2 = 1, and considering (suitable modifications of) their associated ‘big’ diagonal
classes, we extend the construction to all weights 2r ≥ 2 and more general anticyclotomic Hecke characters,
and deduce the proof of the wild norm relations (see Theorem 2.4.2).

Throughout we use the notations introduced in the preceding sections, so in particularK is an imaginary
quadratic field such that

(spl) p = pp̄ splits in K,

with p the prime of K above p induced by ip. Further, we assume that p ∤ 6Nf and that

(cn) p ∤ hK ,
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where hK = |H1| is the class number of K

2.1. Construction for weight (2, 2, 2). Suppose f has weight 2, and ψ1, ψ2 are Hecke characters of K
of infinity type (−1, 0) and modulus f1, f2 ⊂ OK with

(p, fi) = 1

for i = 1, 2, and satisfying χψ1
χψ2

= 1. Let N = lcm(Nf , Nψ1
, Nψ2

) and for every positive integer m put

Y (m) := Y (1, Nm) = Y1(Nm).

When m = 1, we drop it from the notation, so Y := Y1(N). We begin with the cohomology class

(2.1) κ̃(1)m := κNm,r ∈ H1
(
Q, H3

ét(Y (m)3
Q
,Zp(2)

)
of (1.6), where r = (0, 0, 0), and put

κ̃(2)m = (prm∗, 1, 1)κ̃
(1)
m ∈ H1

(
Q, H3

ét(YQ × Y (m)2
Q
,Zp(2)

)
,

where, writing m =
∏
i ℓi as a product of primes ℓi, prm∗ is defined as the composition of the pushforward

by the degeneracy maps prℓi . Applying the Künneth decomposition theorem [Mil13, Thm. 22.4], the class

κ̃
(2)
m is projected to

(2.2) κ̃(3)m ∈ H1
(
Q, H1

ét(YQ,Zp(1))⊗H
1
ét(Y (m)Q,Zp(1))⊗H

1
ét(Y (m)Q,Zp(1))(−1)

)
.

Now we restrict to squarefree integers m > 0 divisible only by primes split in K with (m, pN) = 1, and
write

m = mm

according to a fixed choice of splitting ℓ = l̄l for each prime ℓ | m. We also fix a triple of level-N test
vectors

(f̆ , θ̆ψ1
, θ̆ψ2

) ∈ S2(Γ0(N))[f ]× S2(Γ1(N))[θψ1
]× S2(Γ1(N))[θψ2

].

(Even though it will not be reflected in the notation, our construction will depend on this choice; in later
applications we shall specify the choice of test vectors when needed.)

Since the maps used in the construction κ̃
(3)
m are compatible with correspondences, after tensoring with

O and taking (f, θψ1 , θψ2)-isotypic components, the above process and the choice of test vectors give rise
to a class

κ̃
(4)
f,ψ1,ψ2,m

∈ H1
(
Q, T∨

f ⊗H1
ét(Y1(Nψ1

m)Q,Zp(1))⊗T′(Nψ1
m) O[H

(p)
f1m

]

⊗H1
ét(Y1(Nψ2

m)Q,Zp(1))⊗T′(Nψ2
m) O[H

(p)
f2m

](−1)
)
,

where the labeled tensor products are with respect to the Hecke algebra homomorphisms

(2.3) ϕf1m : T′(Nψ1m)→ O[H(p)
f1m

], ϕf2m : T′(Nψ2m)→ O[H(p)
f2m

]

of Proposition 1.3.1, and we used f̆ to take the image under the projection H1
ét(YQ,Zp(1))[f ]→ T∨

f in the

first factor, and similarly for H1
ét(Y (m)Q,Zp(1))[θψi ]→ H1

ét(Y1(Nψim)Q,Zp(1)) using θ̆ψi , i = 1, 2.
By the isomorphisms from Proposition 1.3.3:

(2.4)
νf1m : H1

ét(Y1(Nψ1
m)Q,Zp(1))⊗T′(Nψ1

m),ϕf1m
O[H(p)

f1m
]

∼−→ IndQK(f1m)O(ψ
−1
1 ),

νf2m : H1
ét(Y1(Nψ2m)Q,Zp(1))⊗T′(Nψ2

m),ϕf2m
O[H(p)

f2m
]

∼−→ IndQK(f2m)O(ψ
−1
2 ),

the class κ̃
(4)
f,ψ1,ψ2,m

defines an element in

H1
(
Q, T∨

f ⊗O IndQK(f1m)O(ψ
−1
1 )⊗O IndQK(f2m)O(ψ

−1
2 )(−1)

)
∼= H1

(
Q, T∨

f ⊗O IndQKOψ−1
1

[H
(p)
f1m

]⊗O IndQKOψ−1
2

[H
(p)
f2m

](−1)
)
,
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where for the second factor in the triple product we use the GK-module isomorphism IndKK(f1m)O(ψ−1
1 ) ∼=

Oψ−1
1

[H
(p)
f1m

], with Oψ−1
1

standing for the free O-module of rank one on which GK acts via ψ−1
1 and with

Hf1m being equipped with the GK-action arising from the projection GK ↠ H
(p)
f1m

; and likewise for the last
factor in the triple product. Taking the image under the maps induced by Hf1m ↠ Hm and Hf2m ↠ Hm,

from κ̃
(4)
f,ψ1,ψ2,m

we obtain

(2.5) κ̃
(5)
f,ψ1,ψ2,m

∈ H1
(
Q, T∨

f ⊗O IndQKOψ−1
1

[H
(p)
m ]⊗O IndQKOψ−1

2
[H

(p)
m ](−1)

)
.

2.1.1. Projection to ring class groups. Directly from the definitions of the class groups involved, we deduce
the commutative diagram with exact rows

O×
K ×O

×
K

// (OK/m)× × (OK/m)× // Hm ×Hm
// H1 ×H1

// 1

O×
K

∆

OO

// (OK/mOK)×

≃

OO

// Hm

OO

// H1

∆

OO

// 1,

where the unlabelled vertical arrow is given by the restriction map

σ 7→ (σ|Km
, σ|Km

).

Since we assume p ∤ 6hK , taking p-primary parts this map induces an isomorphism

(2.6) H(p)
m

≃−→ H
(p)
m ×H(p)

m .

Given an integer n > 0, let H[n] be the ring class group of K of conductor n, so H[n] ≃ Pic(On) under
the Artin reciprocity map, where On = Z + nOK is the order of K of conductor n. Let H[n](p) be the
maximal p-power quotient of H[n], and denote by K[n] be the maximal p-extension inside the ring class
field of K of conductor n, so H[n](p) = Gal(K[n]/K).

Proposition 2.1.1. Suppose p ∤ 6hK and m > 0 is an integer divisible only by primes split in K. Then

writing m = mm and identifying H
(p)
m with H

(p)
m ×H(p)

m as in (2.6), we have an exact sequence

1 −→ (Z/mZ)×,(p)
∆−→ H

(p)
m ×H(p)

m

π∆−→ H[m](p) −→ 1,

where the map ∆ sends a 7→ ([a], [a]) for every integer a coprime to m. Moreover, if ℓ ∤ m is a prime that
splits in K, the projection π∆ sends

[λ]× [λ] 7→ Frobλ

for every prime λ of K above ℓ, where Frobλ is the geometric Frobenius element of λ in H[m](p).

Proof. The first part is clear from the above discussion together with the commutative diagram with exact
rows

O×
K

//

��

(OK/mOK)× //

��

Hm
//

��

H1
//

��

1

O×
K/Z

× // (OK/mOK)×/(Z/mZ)× // H[m] // H1
// 1,

where the vertical arrows are given by the natural projections. The second part follows from the functo-
riality properties of Frobenii. □
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Now we can consider the image of κ̃
(5)
f,ψ1,ψ2,m

under the composite map

(2.7)

IndQKOψ−1
1

[H
(p)
m ]⊗O IndQKOψ−1

2
[H

(p)
m ]

ξ∆ ++

ξ // IndQKOψ−1
1 ψ−1

2
[H

(p)
m ×H(p)

m ]

π∆

��
IndQKOψ−1

1 ψ−1
2

[H[m](p)],

where the horizontal arrow is the map determined by ϕ1⊗ϕ2 7→ ξ(ϕ1⊗ϕ2) with ξ(ϕ1⊗ϕ2)(g) = ϕ1(g1)⊗
ϕ2(g2) if g = (g1, g2) ∈ H(p)

m ×H(p)
m , resulting in the class

κ̃
(6)
f,ψ1,ψ2,m

∈ H1
(
Q, T∨

f ⊗O IndQKOψ−1
1 ψ−1

2
[H[m](p)](−1)

)
.

Definition 2.1.2. For m > 0 any squarefree integer divisible only by primes ℓ ∤ pN split in K, we define

κ̃f,ψ1,ψ2,m ∈ H1
(
K[m], T∨

f (ψ
−1
1 ψ−1

2 )(−1)
)

to be the image of κ̃
(6)
f,ψ1,ψ2,m

under the isomorphism

H1
(
Q, T∨

f ⊗O IndQKOψ−1
1 ψ−1

2
[H[m](p)](−1)

)
≃ H1

(
K[m], T∨

f (ψ
−1
1 ψ−1

2 )(−1)
)

given by Shapiro’s lemma.

We finish this section by recording the following observation for our later use.

Lemma 2.1.3. For any integer m = mm divisible only by primes split in K, and any prime ℓ = ll split in
K, the following diagram is commutative:

IndQKOψ−1
1

[H
(p)
ml ]⊗O IndQKOψ−1

2
[H

(p)

ml
]

Normml
m ⊗Normml

m

��

// IndQKOψ−1
1 ψ−1

2
[H[mℓ](p)]

Normmℓm
��

IndQKOψ−1
1

[H
(p)
m ]⊗O IndQKOψ−1

2
[H

(p)
m ] // IndQKOψ−1

1 ψ−1
2

[H[m](p)],

where the horizonal arrows are given by the composition ξ∆ in (2.7).

Proof. This is clear from the explicit description of the maps involved. □

2.2. Proof of the tame norm relations. Letm > 0 be any integer for which we have the class κ̃f,ψ1,ψ2,m

of Definition 2.1.2.

Proposition 2.2.1. Let ℓ = ll be a prime split in K and coprime to mpN . Then

Norm
K[mℓ]
K[m] (κ̃f,ψ1,ψ2,mℓ) = (ℓ− 1)

(
aℓ(f)−

ψ1(l)ψ2(l)

ℓ
([l]× [l])− ψ1(l)ψ2(l)

ℓ
([l]× [l])

+ (1− ℓ)ψ1(l)ψ2(l)

ℓ2
([l]× [l])

)
(κ̃f,ψ1,ψ2,m).

Proof. In the notations of Theorem 1.3.3, for any n = fm ∈ Af put

H1(ψ, fm) := H1
ét(Y1(Nψm)Q,Zp(1))⊗T′(Nψm) O[H

(p)
fm ].

Then from Lemma 2.1.3 we have the following commutative diagram:

(2.8)

H1
(
Q, T∨

f ⊗H1(ψ1, f1ml)⊗H1(ψ2, f2ml)(−1)
)

1⊗Nml
m ⊗Nml

m

��

// H1
(
K[mℓ], T∨

f (ψ
−1
1 ψ−1

2 )(−1)
)

Normmℓm
��

H1
(
Q, T∨

f ⊗H1(ψ1, f1m)⊗H1(ψ2, f2m)(−1)
)

// H1
(
K[m], T∨

f (ψ
−1
1 ψ−1

2 )(−1)
)
,
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where, for m′ ∈ {ml,m}, the horizontal arrows are given by the maps induced by the projections

H1(ψ1, f1m
′)

νf1m′
−−−→ IndQK(f1m′)O(ψ

−1
1 ) ≃ IndQKOψ−1

1
[H

(p)
f1m′ ] −→ IndQKOψ−1

1
[H

(p)
m′ ]

H1(ψ2, f1m
′)

νf2m′
−−−→ IndQK(f2m

′)O(ψ
−1
2 ) ≃ IndQKOψ−1

2
[H

(p)
f2m

′ ] −→ IndQKOψ−1
2

[H
(p)
m′ ]

from Theorem 1.3.3 together with the map ξ∆ in (2.7). Now, tracing through the definitions we compute:

(1⊗Nml
m ⊗Nml

m )(κ̃
(2)
mℓ)

= (1⊗Nml
m ⊗Nml

m )(prmℓ∗, 1, 1)(κ̃
(1)
mℓ)

= (prm∗, 1, 1)(prℓ∗ ⊗Nml
m ⊗Nml

m )(κ̃
(1)
mℓ)

= (prm∗, 1, 1)

(
prℓ∗×(1⊗ pr1∗ −

ψ1(l)[l]

ℓ
⊗ prℓ∗)× (1⊗ pr1∗ −

ψ2(̄l)[̄l]

ℓ
⊗ prℓ∗)

)
(κ̃

(1)
mℓ)

= (prm∗, 1, 1)

(
(prℓ∗,pr1∗,pr1∗)−

ψ1(l)[l]

ℓ
(prℓ∗,prℓ∗,pr1∗)−

ψ2(l)[l]

ℓ
(prℓ∗,pr1∗,prℓ∗)

+
ψ1(l)ψ2(l)

ℓ2
([l]× [l])(prℓ∗,prℓ∗,prℓ∗)

)
(κ̃

(1)
mℓ).

Together with Proposition 1.4.1, we thus obtain

(1⊗Nml
m ⊗Nml

m )(κ̃
(2)
mℓ) = (ℓ− 1)(prm∗, 1, 1)

(
(Tℓ, 1, 1)−

ψ1(l)[l]

ℓ
(1, 1, T ′

ℓ)− (1, T ′
ℓ , 1)

ψ2(l)[l]

ℓ

+
ψ1(l)ψ2(l)

ℓ2
([l]× [l])(ℓ+ 1)

)
(κ̃(1)m )

= (ℓ− 1)

(
(Tℓ, 1, 1)−

ψ1(l)[l]

ℓ
(1, 1, T ′

ℓ)− (1, T ′
ℓ , 1)

ψ2(l)[l]

ℓ

+
ψ1(l)ψ2(l)

ℓ2
([l]× [l])(ℓ+ 1)

)
(κ̃(2)m ),

and from this it follows that

(1⊗Nml
m ⊗Nml

m )(κ̃
(5)
f,ψ1,ψ2,mℓ

)

= (ℓ− 1)

(
aℓ(f)−

ψ1(l)[l]

ℓ
(ψ2(l)[l] + ψ2(l)[l])− (ψ1(l)[l] + ψ1(l)[l])

ψ2(l)[l]

ℓ

+
ψ1(l)ψ2(l)

ℓ2
([l]× [l])(ℓ+ 1)

)
(κ̃

(5)
f,ψ1,ψ2,m

)

= (ℓ− 1)

(
aℓ(f)−

ψ1(l)ψ2(l)

ℓ
([l]× [l])− ψ1(l)ψ2(l)

ℓ
([l]× [l])

+ (1− ℓ)ψ1(l)ψ2(l)

ℓ2
([l]× [l])

)
(κ̃

(5)
f,ψ1,ψ2,m

).

In light of the commutative diagram (2.8), this yields the result. □

Remark 2.2.2. The appearance of the factor (ℓ − 1) in Proposition 2.2.1 can be traced back to the
relations deg(µℓ)Tℓ = prℓ∗ ◦ pr∗1 and deg(µℓ)T

′
ℓ = pr1∗ ◦ pr∗ℓ , i.e., it is caused by the degeneracy map µℓ. In

the next subsection we shall get rid of this extra factor.

Remark 2.2.3. We want to emphasize that Proposition 2.2.1 is the key result for the construction of our
anticyclotomic Euler system for T∨

f (ψ
−1
1 ψ−1

2 )(−1). In fact, with the factor (ℓ− 1) stripped out, the term
on the right-hand side of Proposition 2.2.1 can be massaged to agree with the local Euler factor at l of the
Galois representation [T∨

f (ψ
−1
1 ψ−1

2 )(−1)]∨(1) = Tf (ψ1ψ2)(2), giving the correct norm relations.
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2.2.1. Removing the extra factor (ℓ− 1). Adapting an idea from [DR17, §1.4], we now introduce a modifi-
cation of the classes κ̃f,ψ1,ψ2,m for which we can prove an analogue of Proposition 2.2.1 without the extra
factor (ℓ− 1).

We begin by noting that for any prime ℓ ∤ N the degeneracy maps pr1,prℓ : Y1(Nℓ) → Y1(N) can be
factored as

Y1(Nℓ)

pr1

%%
µℓ

��
Y (1, N(ℓ))

π1

// Y1(N)

Y1(Nℓ)

prℓ

&&
µℓ

��
Y (1, N(ℓ))

πℓ
// Y1(N),

where π1 and πℓ are a non-Galois coverings of degree ℓ+1, and we recall that µℓ is a cyclic Galois covering
of degree ℓ− 1.

Denote by

(2.9) Dm = {(⟨d⟩, ⟨d⟩) : d ∈ (Z/NmZ)×, d ≡ 1 (modN)}
the set of diamond operators acting diagonally and freely on Y1(Nm)2, and set

W1(Nm) = (Y1(Nm)× Y1(Nm))/Dm.

Let κ̃
(1)
m be as in (2.1), and let

κ(1)m ∈ H1
(
Q, H3

ét(Y (1, N(m))Q ×W1(Nm)Q,Zp)(2)
)

be the image of (µm∗, 1, 1)(κ̃
(1)
m ) under the natural map induced by the projection Y1(Nm)2 →W1(Nm),

which is an étale morphism of degree ϕ(m) = |(Z/mZ)×|. Thus, the class κ
(1)
m is defined by the relation

(2.10) (µm∗, dm∗)κ̃
(1)
m = ϕ(m)κ(1)m .

Proposition 2.2.4. For any prime number ℓ and positive integer m such that (m, ℓ) = 1 and (mℓ,N) = 1,
we have

(πi∗,prj∗,prk∗)κ
(1)
mℓ = (⋆)κ(1)m ,

where
(i, j, k) ⋆ (i, j, k) ⋆
(ℓ, 1, 1) (Tℓ, 1, 1) (ℓ, 1, ℓ) (1, T ′

ℓ , 1)
(1, ℓ, 1) (1, Tℓ, 1) (ℓ, ℓ, 1) (1, 1, T ′

ℓ)
(1, 1, ℓ) (1, 1, Tℓ) (1, 1, 1) (ℓ+ 1)
(1, ℓ, ℓ) (T ′

ℓ , 1, 1) (ℓ, ℓ, ℓ) (ℓ+ 1)

Proof. Directly from the definitions we find

(µm∗, dm∗)(prℓ∗,pr1∗,pr1∗)κ̃
(1)
mℓ = (πℓ∗,pr1∗,pr1∗)(µmℓ∗, dmℓ∗)κ̃

(1)
mℓ

= ϕ(mℓ)(πℓ∗,pr1∗,pr1∗)κ
(1)
mℓ,

while on the other hand, from Proposition 1.4.1 and (2.10) we have

(µm∗, dm∗)(prℓ∗,pr1∗,pr1∗)κ̃
(1)
mℓ = (µm∗, dm∗)(ℓ− 1)(Tℓ, 1, 1)κ̃

(1)
m

= ϕ(m)(ℓ− 1)(Tℓ, 1, 1)κ
(1)
m .

Since ϕ(mℓ) = (ℓ − 1)ϕ(m) according to our assumptions, this shows the result in the case (i, j, k) =
(ℓ, 1, 1) and the other cases are shown in the same manner. □

Now we want to proceed as above to obtain from the new κ
(1)
m a construction of classes satisfying the

correct norm relations (i.e., without the factor ℓ−1). This requires a careful study of the étale cohomology
of the quotient Y (1, N(m))×W1(Nm).

We begin with the Hochschild–Serre spectral sequence:

Ep,q2 = Hp
(
Dm, H

q
ét,c(Y (1, N(m))Q × Y1(Nm)2

Q
,Zp)

)
⇒ Hp+q

ét,c

(
Y (1, N(m))Q ×W1(Nm)Q,Zp

)
.
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This yields the exact sequence

(2.11) E −→ H3
ét,c

(
Y (1, N(m))Q ×W1(Nm)Q,Zp

) (1,d∗m)−−−−→ E0,3
2

d0,32−−→ E2,2
2 ,

where E is naturally identified with a subquotient of E1,2
2 ⊕E

2,1
2 . Thus, we see that the difference between

the two middle pieces are classes coming from Hq
ét,c(Y (1, N(m))Q × Y1(Nm)2

Q
,Zp) with 0 ≤ q ≤ 2.

From the Künneth decomposition [Mil13, Thm. 22.4], each of these classes will have a factor from either
H0

ét,c(Y (1, N(m))Q,Zp) or H
0
ét,c(Y1(Nm)Q,Zp). These vanish because étale cohomology of affine smooth

curves with compact support vanishes in degree zero. Hence, we obtain an isomorphism

H3
ét,c

(
Y (1, N(m))Q ×W1(Nm)Q,Zp

) (1,d∗m)−−−−→ H3
ét,c

(
Y (1, N(m))Q × Y1(Nm)2

Q
,Zp)

)Dm
.

As in the proof of [DR17, Lem. 1.8], Poincaré duality implies from (2.11) that the following map

(2.12) H3
ét

(
Y (1, N(m))Q ×W1(Nm)Q,Zp

) (1,dm∗)←−−−−− H3
ét

(
Y (1, N(m))Q × Y1(Nm)2

Q
,Zp)

)
Dm

is also an isomorphism. Therefore from (2.12) and the Künneth decomposition, it follows that we get a
natural map

(2.13) H3
ét(Y (1, N(m))Q ×W1(Nm)Q,Zp)

(1,d−1
m∗)−−−−−→ H1

ét(Y (1, N(m))Q,Zp)⊗
H1

ét(Y1(Nm)Q,Zp)⊗Dm H1
ét(Y1(Nm)Q,Zp)).

Now we put κ
(2)
m := (πm∗, 1, 1)κ

(1)
m , and define

κ(3)m ∈ H1
(
Q, H1

ét(Y1(N)Q,Zp)⊗H
1
ét(Y1(Nm)Q,Zp)⊗Dm H1

ét(Y1(Nm)Q,Zp)(−1)
)
,

to be the image of κ
(2)
m under the map (2.13).

Note that takingD
(p)
m -coinvariants (whereD

(p)
m denotes the p-part ofDm) is compatible with the map ξ∆

in (2.7), since by Theorem 1.3.1 for (⟨d⟩, ⟨d⟩) ∈ D(p)
m we have ϕm(⟨d⟩′)×ϕm(⟨d⟩′) = [d]× [d] ∈ H(p)

m ×H(p)
m ,

and this is in the kernel of π∆. Thus, applying to κ
(3)
m the same process we used above to go from κ̃

(3)
m to

the class κ̃f,ψ1,ψ2,m of Definition 2.1.2, we obtain

κf,ψ1,ψ2,m ∈ H1
(
K[m], T∨

f (ψ
−1
1 ψ−1

2 )(−1)
)
.

Proposition 2.2.5. Suppose m is a positive squarefree integer divisible only by primes q ∤ pN split in K.
Let ℓ ∤ pmN be a prime split in K. Then

Norm
K[mℓ]
K[m] (κf,ψ1,ψ2,mℓ) =

(
aℓ(f)−

ψ1(l)ψ2(l)

ℓ
([l]× [l])− ψ1(l)ψ2(l)

ℓ
([l]× [l])

+ (1− ℓ)ψ1(l)ψ2(l)

ℓ2
([l]× [l])

)
(κf,ψ1,ψ2,m).

Proof. After the above discussion, the same calculation as in the proof of Proposition 2.2.1 applies, replac-
ing the use of Proposition 1.4.1 by Proposition 2.2.4. □

Therefore, we arrive at the following theorem:

Theorem 2.2.6. Suppose p > 3 is a prime split in K with p ∤ hK . Let m = mm run over the squarefree
integers divisible only by primes split in K and coprime to pN . Then there exists a collection of cohomology
classes

zf,ψ1,ψ2,m ∈ H1
(
K[m], T∨

f (ψ
−1
1 ψ−1

2 )(−1)
)

such that for every prime ℓ = ll split in K with (ℓ,mpN) = 1 we have the norm relation

Norm
K[mℓ]
K[m] (zf,ψ1,ψ2,mℓ) = Pl(Frobl)(zf,ψ1,ψ2,m),

where Pl(X) = det(1−X · Frobl |Tf (ψ1ψ2)(2)).



20 F.CASTELLA AND K.T.DO

Proof. Denote by Ql the factor appearing in the right-hand side of Proposition 2.2.5. Recalling that [l]× [l]
corresponds to Frobl ∈ H[m](p) under the map π∆ of Proposition 2.1.1, we find the following congruences
as endomorphisms of H1(K[m], T∨

f (ψ
−1
1 ψ−1

2 )(−1)):

− ψ1ψ2(l)([l]× [l]) ·Ql

≡ −aℓ(f)ψ1ψ2(l)([l]× [l]) +
ψ1ψ2(l)

2

ℓ
([l]× [l])2 +

ψ1ψ2((ℓ))

ℓ
([ℓ]× [ℓ])

≡ Pl(Frobl) (mod ℓ− 1),

using the relation ψ1ψ2((ℓ)) = χψ1
χψ2

(ℓ)ℓ2 = ℓ2 and the fact that [ℓ] × [ℓ] is in the kernel of π∆ for the
second congruence. Therefore, by Lemmas 9.6.1 and 9.6.3 in [Rub00] (which will not alter the bottom
class of our Euler system), the existence of classes zf,ψ1,ψ2,m with zf,ψ1,ψ2,1 = κf,ψ1,ψ2,1 and satisfying the
stated norm relations follows from Proposition 2.2.5. □

Remark 2.2.7. Similar to what we did for l a split prime of K, when l = (ℓ) is inert in K, we also obtain
such a norm relation like in Theorem 2.2.6. Remember that in this case, we push forward from level Nℓ2

to level N . First, note that the norm map from Proposition 1.3.1 is then given by

N n(ℓ)
n = 1⊗ pr1∗ −

ψ(ℓ)[(ℓ)]

ℓ2
⊗ prℓℓ∗

Second, to calculate (1⊗Nmℓ
m ⊗Nmℓ

m )(κ
(2)
mℓ), just like in Proposition 2.2.1, we use the table in Proposition

1.4.1 together with

(prℓ∗,pr1*,pr1*)(Tℓ, 1, 1)κ
(2)
mℓ = {(T

2
ℓ , 1, 1)− (ℓ+ 1)(⟨ℓ⟩, 1, 1)}κ(2)m ,

(prℓ∗,prℓ∗,pr1*)(1, 1, T
′
ℓ)κ

(2)
mℓ = {(1, 1, T

′2
ℓ )− (ℓ+ 1)(1, 1, ⟨ℓ⟩′)}κ(2)m ,

and arrive at

Norm
K[mℓ]
K[m] (κ

(6)
f,ψ1,ψ2,mℓ

) = (ℓ− 1)

(
aℓ(f)

2 − (ℓ+ 1)− 2(ℓ+ 1)

ℓ
[ℓ]× [ℓ] + (ℓ+ 1)[ℓ]× [ℓ]

)
(κ

(6)
f,ψ1,ψ2,m

).

Instead of Proposition 2.1.1, we use the following exact sequence

1 −→ Hm
∆−→ Hm ×Hm −→ Hm −→ 1,

combining with the quotient Hm → H[m], which makes [ℓ]× [ℓ] acting trivially on the cohomology class.
After removing the extra factor (ℓ− 1) and multiplying with −1 on the RHS factor, we obtain the correct
Euler factor modulo ℓ2 − 1:

Pl(Frobl) = 2 + 2ℓ− aℓ(f)2.
Note that (ℓ+ 1)/ℓ ≡ (ℓ+ 1)ℓ = ℓ2 + ℓ ≡ 1 + ℓ (mod ℓ2 − 1) and the twist ψ1(ℓ)ψ2(ℓ)/ℓ

2 = 1.

2.3. A variant. With a slight modification of the construction in the preceding sections, we can obtain a
similar collection of cohomology classes for T∨

f (ψ
−1
1 ψ−c

2 )(−1) satisfying the corresponding norm relations.

Here ψc
2(σ) = ψ2(cσc

−1) denotes the composition of ψ2 with the action of the non-trivial automorphism
of K/Q. Indeed, following Section 2.1, we replace the second map in (2.3) by

ϕf2m : T′(Nψ2
m)→ O[H(p)

f2m
]

and the second map in (2.4) by

νf2m : H1
ét(Y1(Nψ2

m)Q,Zp(1))⊗T′(Nψ2
m),ϕf2m

O[H(p)
f2m

]
∼−→ IndQK(f2m)O(ψ

−1
2 ).

Thus, similarly as in (2.5) we obtain

cκ̃
(5)
f,ψ1,ψ2,m

∈ H1
(
Q, T∨

f ⊗O IndQKOψ−1
1

[H
(p)
m ]⊗O IndQKOψ−1

2
[H

(p)
m ](−1)

)
.
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The diagram (2.7) is then replaced with

(2.14)

IndQKOψ−1
1

[H
(p)
m ]⊗O IndQKOψ−1

2
[H

(p)
m ]

ξc∆

''

1⊗υ // IndQKOψ−1
1

[H
(p)
m ]⊗O IndQKOψ−c

2
[H

(p)
m ]

ξ

��
IndQKOψ−1

1 ψ−c
2

[H
(p)
m ×H(p)

m ]

π∆

��
IndQKOψ−1

1 ψ−c
2

[H[m](p)],

where the isomorphism υ : IndQKOψ−1
2

[H
(p)
m ] → IndQKOψ−c

2
[H

(p)
m ] comes from the action of complex conju-

gation on the inducing representation.
Consequently, Lemma 2.1.3 now turns into the following commutative diagram:

(2.15)

IndQKOψ−1
1

[H
(p)
ml ]⊗O IndQKOψ−1

2
[H

(p)
ml ]

Normml
m ⊗Normml

m

��

ξc∆ // IndQKOψ−1
1 ψ−c

2
[H[mℓ](p)]

Normmℓm
��

IndQKOψ−1
1

[H
(p)
m ]⊗O IndQKOψ−1

2
[H

(p)
m ]

ξc∆ // IndQKOψ−1
1 ψ−c

2
[H[m](p)].

The same process as above then leads to the following ‘conjugate’ variant of Theorem 2.2.6:

Corollary 2.3.1. With notations as in Theorem 2.2.6, there exists a collection of cohomology classes

czf,ψ1,ψ2,m ∈ H1
(
K[m], T∨

f (ψ
−1
1 ψ−c

2 )(−1)
)

such that for every prime ℓ = ll split in K with (ℓ,mpN) = 1 we have the norm relation

Norm
K[mℓ]
K[m] (

czf,ψ1,ψ2,mℓ) = Pl(Frobl)(
czf,ψ1,ψ2,m),

where Pl(X) = det(1−X · Frobl |Tf (ψ1ψ
c
2)(2)).

Proof. We first follow Proposition 2.2.1 to have

(1⊗Nml
m ⊗Nml

m )(cκ̃
(5)
f,ψ1,ψ2,mℓ

) = (ℓ− 1)

(
aℓ(f)−

ψ1(l)ψ2(l)

ℓ
([l]× [l])− ψ1(l)ψ2(l)

ℓ
([l]× [l])

+ (1− ℓ)ψ1(l)ψ2(l)

ℓ2
([l]× [l])

)
(cκ̃

(5)
f,ψ1,ψ2,m

).

Combining the new ξc∆ (this maps the second factor [l] to [l], and leads to counterpart cκ̃f,ψ1,ψ2,m of the
classes κ̃f,ψ1,ψ2,m of Definition 2.1.2) and the diagram (2.15), one obtains

Norm
K[mℓ]
K[m] (

cκ̃f,ψ1,ψ2,mℓ) = (ℓ− 1)

(
aℓ(f)−

ψ1(l)ψ
c
2(l)

ℓ
([l]× [l])− ψ1(l)ψ

c
2(l)

ℓ
([l]× [l])

+ (1− ℓ)ψ1(l)ψ
c
2(l)

ℓ2
([l]× [l])

)
(cκ̃f,ψ1,ψ2,m).

This formula should be treated as a replacement for Proposition 2.2.1.
Then we remove the extra factor (ℓ− 1) as in §2.2.1 to obtain classes cκf,ψ1,ψ2,m, modify the remaining

factor through multiplication by −ψ1ψ
c
2(l)([l]× [l]), and apply Lemmas 9.6.1 and 9.6.3 in [Rub00] to obtain

the existence of classes czf,ψ1,ψ2,m with czf,ψ1,ψ2,1 = cκf,ψ1,ψ2,1 and the desired norm relations. □
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2.4. Construction for general weights and wild norm relations. We now extend the constructions
of the preceding subsections to f ∈ S2r(Γ0(Nf )) of any weight 2r ≥ 2 and more general Hecke characters,
assuming in addition that

(ord) f is ordinary at P,

which we shall often refer to as f being ‘p-ordinary’; and prove that the resulting classes also satisfy the
wild norm relations, i.e., they are universal norms in the anticyclotomic Zp-extension of K.

2.4.1. CM Hida families. We shall replace the weight 2 theta series θψ1
, θψ2

by p-adic families, so we begin
by recalling the explicit construction of certain CM Hida families, following the exposition in [Hsi21, §8.1].

Let Γ∞ = Gal(K∞/K) be the Galois group of the Z2
p-extension of K, which under our hypotheses can

be written as

Γ∞ ≃ Γp∞ × Γp̄∞ ,

with Γp∞ = Gal(K◦
p∞/K) (resp. Γp̄∞ = Gal(K◦

p̄∞/K)) representing the Galois group of the unique Zp-
extension of K inside K∞ unramified outside p (resp. p̄). Recall that for every ideal c ⊂ OK we denote by
Kc the ray class field of K of conductor c (so in particular K◦

p∞ is the maximal Zp-extension of K inside

Kp∞). For q ∈ {p, p̄}, denote by Artq : K×
q → Gab

K the restriction of the Artin reciprocity map to K×
q ,

with geometric normalisations. With the identification Z×
p ≃ O×

Kq
, the map Artq induces an isomorphism

1+pZp
∼−→ Γq∞ (note that this uses our hypothesis (cn)). Let u = 1+p and let γq ∈ Γq∞ be the topological

generator γq = Artq(u)|K◦
q∞ with cγpc

−1 = γp̄, where Gal(K/Q) = {1, c}.
For each variable Z, let ΨZ : Γ∞ → ZpJZK× be the universal character given by

ΨZ(σ) = (1 + Z)l(σ),

where l(σ) ∈ Zp is such that σ|K◦
p∞ = γ

l(σ)
p . Note that the specialisation ψ0 of ΨZ to Z = u− 1 descends

to an isomorphism

ψ0 = Ψu−1 : Γp∞
∼−→ 1 + pZp

(namely, the inverse of the above isomorphism induced by Artp), and may be seen as the p-adic avatar of
a Hecke character – still denoted ψ0 – of K of infinity type (1, 0) and conductor p.

For c coprime to p, and for any finite order character ξ : GK → O× of conductor dividing c put

(2.16) θξ(Z)(q) =
∑

(a,pc)=1

ξψ−1
0 (σa)Ψ

−1
Z (σa)q

NK/Q(a) ∈ OJZKJqK,

where σa ∈ Gal(K(cp∞)/K) is the Artin symbol of a. With conventions as in §4.1.1 below (which differ
slightly from those in [Hsi21, §3.1]; our weight map is centered at weight 2 rather than 0), θξ(Z)(q) is a Hida
family defined over OJZK of tame level NK/Q(c)DK and tame character (ξ ◦ V )ϵKω

−1, where V : Gab
Q →

Gab
K is the transfer map, ϵK is the quadratic character corresponding to K/Q, and ω : (Z/pZ)× → Z×

p is
the Teichmüller character.

2.4.2. The construction. Let ξ1, ξ2 be ray class characters of K of conductor prime-to-p with

(sd) χξ1χξ2 = 1.

Let f be the Hida family passing through (the p-ordinary p-stabilisation of) f , and let

(g,h) = (θξ1(Z1),θξ2(Z2))

be the CM Hida families attached to ξ1 and ξ2. The tame characters of (f , g,h) are given by

(χf , χg, χh) = (ω2r−2, χξ1ϵKω
−1, χξ2ϵKω

−1),

and so (sd) implies the self-duality condition in (sd-triple) below.
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Let Λ = ZpJ1 + pZpK and let κ : Z×
p → Λ× be a continuous character. Set T = Z×

p ×Zp, T
′ = pZp×Z×

p ,
and consider the Λ-modules

Aκ =
{
f : T→ Λ | f(1, z) ∈ Cont(Zp,Λ) and f(a · t) = κ(a) · f(t) for all a ∈ Z×

p , t ∈ T
}
,

A′
κ =

{
f : T′ → Λ | f(pz, 1) ∈ Cont(Zp,Λ) and f(a · t) = κ(a) · f(t) for all a ∈ Z×

p , t ∈ T′}
equipped with the mΛ-adic topology, for mΛ the maximal ideal of Λ. We also consider

Dκ = Homcont,Λ(Aκ,Λ), D′
κ = Homcont,Λ(A′

κ,Λ)

equipped with the weak-∗ topology.
For each i ∈ Z/(p− 1)Z, let κi : Z

×
p → Λ× be the character

z 7→ ωi(z)[⟨z⟩],

where ⟨z⟩ = zω−1(z) ∈ 1 + pZp and [·] : 1 + pZp ↪→ Λ× is the inclusion as group-like elements. Put A·
i,D·

i

to denote A·
κi ,D

·
κi , and note that, by composing with the map ρk−2 : Λ× → Z×

p defined by u 7→ uk−2, the

Λ-adic character κi interpolates the power maps z 7→ zk−2 on Z×
p for k − 2 ≡ i (mod p− 1). Replacing Λ

by Z×
p and κi by the character z 7→ zi for z ∈ Z×

p and i ≥ 0, we define the Zp-modules A·
i, D

·
i in the same

manner, see also [ACR23, §5.4].
To ease notation, set Y (m, p) = Y (1, Nm(p)) and denote by Γ(m, p) the associated congruence subgroup.

As in [BSV22, Eq. (81) et seq.], the evaluation A·
κ ⊗Λ D·

κ → Λ gives rise to a Λ-module homomorphism

ξi : H
1(Γ(m, p),Ai)→ HomΛ(H

1
c (Γ(m, p),Di),Λ).

Similarly, the determinant map det : T×T′ → Z×
p defined by det((x1, x2), (y1, y2)) = x1y2−x2y1, composed

with κi : Z
×
p → Λ× gives rise to

ζi : HomΛ(H
1
c (Γ(m, p),Di),Λ)→ H1(Γ(m, p),D′

i)(−κi).

Then for any weight k ≥ 2 with k − 2 ≡ i (mod p− 1) we have specialisation maps

ρk−2 : H1(Γ(m, p),Ai)→ H1
ét(Y (m, p)Q,Sk−2), ρk−2 : H1(Γ(m, p),D′

i)→ H1
ét(Y (m, p)Q,Lk−2)

fitting into the commutative diagram

H1(Γ(m, p),Ai)

ρk−2

��

ζi◦ξi // H1(Γ(m, p),D′
i)(−κi)

ρk−2

��
H1

ét(Y (m, p)Q,Sk−2)
sk−2 // H1

ét(Y (m, p)Q,Lk−2)(2− k),

where sk−2 is induced by (1.5).
Adopting the notations from [BSV22] (but working with the above modules of continuous functions

A·
i, A

·
i and their duals D·

i, D
·
i, rather than the analogous spaces of locally analytic functions considered in

op. cit., and letting A·
i,A

·
i denote the (big) étale sheaves on Y (m, p) associated with A·

i, A
·
i as in [ACR23,

§5.3,§5.6]), we let

(2.17) κ̃(1)
m ∈ H1

(
Q, H1(Γ(m, p), D′

2r−2)⊗̂OH
1(Γ(m, p),D′

−1)⊗̂OH
1(Γ(m, p),D′

−1)(2− κ∗
fgh)

)
be the image of the element

DetfghNm,p ∈ H
0
ét(Y (m, p),A′

2r−2 ⊗A−1 ⊗A−1(−κ∗fgh))
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defined in [BSV22, §8.1] (which have specialised via ρ2r−2 : A′
2r−2 → A′

2r−2) under the composition

H0
ét

(
Y (m, p),A′

2r−2 ⊗A−1 ⊗A−1(−κ∗fgh)
)

d∗−→ H4
ét

(
Y (m, p)3,A′

2r−2 ⊠A−1 ⊠A−1(−κ∗
fgh)⊗ Zp(2)

)
HS−→ H1(Q, H3

ét(Y (m, p)3
Q
,A′

2r−2 ⊠A−1 ⊠A−1)(2 + κ∗fgh))

K−→ H1
(
Q, H1(Γ(m, p), A′

2r−2)⊗̂ZpH
1(Γ(m, p),A−1)⊗̂ZpH

1(Γ(m, p),A−1)(2 + κ∗
fgh)

)
(wp⊗1⊗1)∗−−−−−−−→ H1

(
Q, H1(Γ(m, p), A2r−2)⊗̂ZpH

1(Γ(m, p),A−1)⊗̂ZpH
1(Γ(m, p),A−1)(2 + κ∗

fgh)
)

sfgh−−−→ H1
(
Q, H1(Γ(m, p), D′

2r−2)⊗̂ZpH
1(Γ(m, p),D′

−1)⊗̂ZpH
1(Γ(m, p),D′

−1)(2− κ∗
fgh)

)
,

where sfgh = s2r−2 ⊗ (ζ−1 ◦ ξ−1)⊗ (ζ−1 ◦ ξ−1), κ
∗
fgh : Z×

p → Λ× is the square-root of the product of the
characters

(2.18) κf (z) = z2r−2, κg(z) = κ−1(z), κg(z) = κ−1(z),

and κ∗
fgh : GQ → Λ× is the composition of κ∗fgh with the p-adic cyclotomic character εcyc : GQ → Z×

p .

Let Γ̃(m, p) = Γ(1, N(mp)). Similarly as in §2.2.1, replacing the second and third copies of Y (m, p) in
the above construction by the quotient Y (m, p)2/Dm, where Dm is the group of diamond operators as in
(2.9) acting diagonally on Y (m, p)2, we obtain the class

(2.19) κ(1)
m ∈ H1

(
Q, H1(Γ̃(m, p), D′

2r−2)⊗̂ZpH
1(Γ(m, p),D′

−1)⊗̂Zp[Dm]H
1(Γ(m, p),D′

−1)(2− κ∗
fgh)

)
determined by the relation ϕ(m)κ

(1)
m = (µm∗, dm∗)κ̃

(1)
m , and we put

(2.20) κ(2)
m := (πm∗, 1, 1)κ

(1)
m .

Proposition 2.4.1. For a prime number ℓ and a positive integer m with (mℓ, pN) = 1 we have

(πi∗,prj∗,prk∗)κ
(1)
mℓ = (⋆)κ(1)

m ,

where
(i, j, k) ⋆
(ℓ, 1, 1) (Tℓ, 1, 1)
(1, ℓ, 1) (1, Tℓ, 1)
(1, 1, ℓ) (1, 1, Tℓ)
(1, ℓ, ℓ) κ∗

fgh(ℓ)κf (ℓ)
−1(T ′

ℓ , 1, 1)

(ℓ, 1, ℓ) κ∗
fgh(ℓ)κg(ℓ)

−1(1, T ′
ℓ , 1)

(ℓ, ℓ, 1) κ∗
fgh(ℓ)κh(ℓ)

−1(1, 1, T ′
ℓ)

and κf ,κg,κh : GQ → Λ× denote the composition of the characters (2.18) with εcyc. If we also have that
(ℓ,m) = 1 then

(i, j, k) ⋆
(1, 1, 1) (ℓ+ 1)
(ℓ, ℓ, ℓ) (ℓ+ 1)κ∗

fgh(ℓ)

Proof. With πi replaced by pri and the classes κ
(1)
m replaced by κ̃

(1)
m , the stated relations with an extra

factor of ℓ − 1 follow immediately from equations (174) and (176) in [BSV22] (adding the prime ℓ to the

level, rather than p). The stated relations for κ
(1)
m then follow in the same way as in Proposition 2.2.4. □

Assume that

(dist) ξi(p) ̸≡ ξi(p̄) (modP),

for i = 1, 2, so the Galois representation associated to the CM family θξi(Zi) are p-distinguished. Note that

the specialisation of θξi(Zi) to Zi = 0 gives the ordinary p-stabilisation (with Up-eigenvalue ξiψ
−1
0 (p̄)) of
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the weight 2 theta series associated to ξiψ
−1
0 , which may be seen as the p-adic avatar of a Hecke character

of K of infinity type (−1, 0).
Let fi ⊂ OK with (p, fi) = 1 be a modulus for ξi, and put Nξi = NK/Q(fi)DK . Then for every r ≥ 1

and every integer m = mm coprime to p and divisible only by primes split in K, we have Hecke algebra
homomorphisms

(2.21) ϕf1mpr : T(1, Nξ1mpr)′ → O[Hf1mpr ], ϕf2mpr : T(1, Nξ2mpr)′ → O[Hf2mpr ]

associated to ξ1ψ
−1
0 , ξ2ψ

−1
0 , respectively, and by Theorem 1.3.3 these induce isomorphisms

νf1mpr : H
1
ét(Y1(Nξ1mp

r)Q,Zp(1))⊗Zp O[H
(p)
f1mpr ]

≃−→ IndQK(f1mpr)O(ξ
−1
1 ψ0)

νf2mpr : H
1
ét(Y1(Nξ2mp

r)Q,Zp(1))⊗Zp O[H
(p)
f2mpr ]

≃−→ IndQK(f2mpr)O(ξ
−1
2 ψ0)

satisfying the natural compatibility as r varies. On the other hand, as explained in [ACR23, §5.6] we have
GQ-module isomorphisms

(2.22) H1(Γ(1, Nξim(p)),D′
j(1)) ≃ ej lim←−

r

H1
ét(Y1(Nξimp

r)Q,Zp(1)),

where ej =
1
p−1

∑
a∈(Z/pZ)× ω

−j(a)[a] is the projector onto the ωj-isotypic component of Zp[[Z
×
p ]]. There-

fore, combining (2.22) with the inverse limit lim←−r νfimpr and using the decompositions H
(p)
f1mp∞ ≃ H(p)

f1m
×Γp

and H
(p)
f2mp∞ ≃ H(p)

f2m
× Γp, we obtain the GQ-equivariant isomorphisms

(2.23)
νf1mp∞ : H1(Γ(1, Nξ1m(p)),D′

−1(1))⊗̂ZpO[[H
(p)
f1mp∞ ]]

≃−→ IndQK(f1m)Λp(ξ
−1
1 ψ0),

νf2mp∞ : H1(Γ(1, Nξ2m(p)),D′
−1(1))⊗̂ZpO[[H

(p)
f2mp∞ ]]

≃−→ IndQK(f2m)Λp(ξ
−1
2 ψ0),

where Λp = OJΓp∞K with the GK-action given by the tautological character GK ↠ Γp∞ ↪→ Λ×
p .

Continuing with the construction in this section, as in §2.1, the maps used to arrive at κ
(2)
m in (2.20) are

compatible under correspondences. Therefore, after tensoring with O[H(p)
f1mpr ] and O[H

(p)
f2mpr ] via ϕf1mpr

and ϕf2mpr , respectively, and letting r →∞, the same construction gives rise to a class

κ(3)
m ∈ H1

(
Q, H1(Γ(1, N(p)), D′

2r−2)⊗̂O(H
1(Γ(m, p),D′

−1)⊗̂ZpO[[H
(p)
f1mp∞ ]])

⊗̂O[Dm](H
1(Γ(m, p),D′

−1)⊗̂ZpO[[H
(p)
f2mp∞ ]])(2− κ∗

fgh)
)
.

Now let (f̆ , ğ, h̆) be a triple of level-N test vectors for (f, g,h). Then we obtain a GQ-equivariant map

(2.24) ϖf̆ : H1(Γ(1, N(p)), D′
2r−2(1))[f ]→ T∨

f .

Composing with the isomorphisms (2.23) and the natural projections H
(p)
f1m
→ H

(p)
m , H

(p)
f2m
→ H

(p)
m , we also

obtain the GQ-equivariant maps

(2.25)
ϖğ : H1(Γ(m, p),D′

−1(1))⊗̂ZpO[[H
(p)
f1mp∞ ]]→ IndQKOξ−1

1 ψ0
[H

(p)
m ][[Γp]],

ϖh̆ : H1(Γ(m, p),D′
−1(1))⊗̂ZpO[[H

(p)
f2mp∞ ]]→ IndQKOξ−1

2 ψ0
[H

(p)
m ][[Γp]].

Taking the image of κ
(3)
m under the natural maps induced by (2.24) and (2.25) we thus obtain

κ
(4)
f,ξ1,ξ2,m

∈ H1
(
Q, T∨

f ⊗̂O(Ind
Q
KOξ−1

1 ψ0
[H

(p)
m ][[Γp]])⊗̂O(Ind

Q
KOξ−1

2 ψ0
[H

(p)
m ][[Γp]])(−1− κ∗

fgh)
)
,

using that by (sd) the above ⊗Zp[Dm] can be replaced by ⊗̂Zp .
Next, we note that, with the identifications Λp

∼= OJZ1K,Λp
∼= OJZ2K defined by our choice of topological

generator γp ∈ Γp, we have the following equalities as GK-representations

Oξ−1
1 ψ0

[[Γp]] = ξ−1
1 ψ0ΨZ1

, Oξ−1
2 ψ0

[[Γp]] = ξ−1
2 ψ0ΨZ2

,
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where the terms on the right-hand side of these isomorphisms denote the free OJZiK-module of rank one
with GK-action via ξ−1

i ψ0ΨZi ; and the character −1−κ∗
fgh (written additively as in [BSV22, §8.1]) is the

same as ε1−rcyc (ψ
−1
0 Ψ

−1/2
Z1

Ψ
−1/2
Z2

◦ V ). Thus, we may equivalently write
(2.26)

κ
(4)
f,ξ1,ξ2,m

∈ H1
(
Q, T∨

f (1−r)⊗̂O(Ind
Q
Kξ

−1
1 ψ0ΨZ1

[H
(p)
m ])⊗̂O(Ind

Q
Kξ

−1
2 ψ0ΨZ2

[H
(p)
m ])⊗(ψ−1

0 Ψ
−1/2
Z1

Ψ
−1/2
Z2
◦V )

)
,

which applying the diagonal map ξ∆ in (2.7) gives rise to the class

(2.27) κ
(5)
f,ξ1,ξ2,m

∈ H1
(
Q, T∨

f (1− r)⊗̂OInd
Q
Kξ

−1
1 ξ−1

2 ψ1−c
0 Ψ

(1−c)/2
Z1

Ψ
(1−c)/2
Z2

[H[m](p)]
)
,

where Ψc
Zi

: Γ∞ → OJZiK× denotes the character given by

Ψc
Zi(σ) = (1 + Zi)

l(σ),

with l(σ) ∈ Zp determined by σ|K◦
p̄∞ = γ

l(σ)
p̄ .

2.4.3. Anticyclotomic Iwasawa cohomology classes. The action of the complex conjugation c ∈ Gal(K/Q)
(or more precisely, any lift of c to Gal(K∞/K)) on Γ∞ yields the subgroup decomposition

Γ∞ ≃ Γ+ × Γ−,

with Γ− representing the Galois group of the anticyclotomic Zp-extension K
−
∞/K. We can then identify

Γp∞ ∼= Γ− by mapping the topological generator γp to γ
1/2
p γ

−1/2
p̄ =: γ− ∈ Γ−. Puting V1 := (1+Z1)

1/2−1,
we have OJΓ−K ∼= OJV1K. The character

Ψ1−c
V1

= Ψ
(1−c)/2
Z1

: Γ∞ → OJV1K×

factors through Γ− and is identified with the tautological character Γ− ↪→ OJΓ−K×. Thus setting Z2 = 0

in (2.27), by Shapiro’s lemma the class κ
(5)
f,ξ1,ξ2,m

finally gives rise to

(2.28) κ
(6)
f,ξ1,ξ2,m

∈ H1
Iw(K[mp∞], T∨

f (1− r)⊗ ξ−1
1 ξ−1

2 ψ1−c
0 ),

where H1
Iw(K[mp∞], T ) denotes the limit lim←−sH

1(K[mps], T ) with respect to corestriction. Thus, we

arrive at the following key result.

Theorem 2.4.2. Let f ∈ S2r(Γ0(Nf )) be a p-ordinary newform of weight 2r ≥ 2, let K be an imaginary
quadratic field satisfying (spl) and (cn), let ξ1, ξ2 be ray class characters of K satisfying (sd) and (dist)
with moduli f1, f2 ⊂ OK , and suppose (p,Nf f1f2) = 1. Let ϕ : Γ− → O× be the p-adic avatar of an anticy-
clotomic Hecke character of K of infinity type (−j, j) with j ∈ Z, and consider the GK-representations

Tf,ξ1ξ2ϕ = T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 ϕ−1, Tf,ξ1ξc2ϕ = T∨

f (1− r)⊗ ξ−1
1 ξ−c

2 ϕ−1.

Let m = mm run over the squarefree integers divisible only by primes split in K and coprime to pN , where
N = lcm(Nf , Nξ1 , Nξ2). Then there exists collections of Iwasawa cohomology classes

zf,ξ1,ξ2,ϕ,m ∈ H1
Iw

(
K[mp∞], Tf,ξ1ξ2ϕ

)
, czf,ξ1,ξ2,ϕ,m ∈ H1

Iw

(
K[mp∞], Tf,ξ1ξc2ϕ

)
such that for every prime ℓ = ll split in K with (ℓ,mpN) = 1 we have the norm relations

Norm
K[mℓ]
K[m] (zf,ξ1,ξ2,ϕ,mℓ) = Pl(Frobl)(zf,ξ1,ξ2,ϕ,m),

where Pl(X) = det(1−X · Frobl |T∨
f,ξ1ξ2ϕ

(1)), and

Norm
K[mℓ]
K[m] (

czf,ξ1,ξ2,ϕ,mℓ) = P c
l (Frobl)(

czf,ξ1,ξ2,ϕ,m),

where P c
l (X) = det(1−X · Frobl |T∨

f,ξ1ξc2ϕ
(1)).
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Proof. For ϕ = ψc−1
0 (which factor through Γ− and corresponds to the p-adic avatar of a Hecke character

of K of infinity type (−1, 1)), the construction of the classes zf,ξ1,ξ2,ϕ,m satisfying the stated norm relations

follows from a direct adaptation of the proof of Theorem 2.2.6 applied to the classes κ
(6)
f,ξ1,ξ2,m

of (2.28)

using Proposition 2.4.1; the construction of zf,ξ1,ξ2,ϕ,m for general ϕ then following by twisting by ϕ−1ψc−1
0

using [Rub00, Thm. 6.3.5].
The construction of the ‘conjugate’ variant classes czf,ξ1,ξ2,ϕ,m follows from an adaptation of the con-

struction described in Section 2.3. Indeed, replacing the homomorphism ϕf2mpr in (2.21) by

ϕf2mpr : T(1, Nξ2mpr)′ → O[Hf2mpr ],

we arrive at the GQ-equivariant isomorphism

νf2mp∞ : H1(Γ(1, Nξ2m(p)),D′
−1(1))⊗̂ZpO[[H

(p)
f2mp∞ ]]

≃−→ IndQK(f2m)Λp(ξ
−1
2 ψ0),

and in the same manner as above from the classes κ
(2)
m in (2.20) we obtain classes

(2.29)
cκ

(4)
f,ξ1,ξ2,m

∈ H1
(
Q, T∨

f (1−r)⊗ (IndQKξ
−1
1 ψ0ΨZ1

[H
(p)
m ])⊗̂(IndQKξ

−1
2 ψ0ΨZ2

[H
(p)
m ])⊗ (ψ−1

0 Ψ
−1/2
Z1

Ψ
−1/2
Z2

◦V )
)
.

Applying to these the ‘conjugate’ map ξc∆ in (2.14) we obtain

cκ
(5)
f,ξ1,ξ2,m

∈ H1
(
Q, T∨

f (1− r)⊗O IndQKξ
−1
1 ξ−c

2 Ψ
(1−c)/2
Z1

Ψ
(c−1)/2
Z2

[H[m](p)]
)
,

which after setting Z2 = 0 result in classes

cκf,ξ1,ξ2,m ∈ H1
Iw(K[mp∞], T∨

f (1− r)⊗ ξ−1
1 ξ−c

2 ).

Applying the argument in the proof of Theorem 2.2.6 to these classes yields the construction of czf,ξ1,ξ2,ϕ,m
for ϕ = 1, and the construction for general ϕ then follows again by twisting (by ϕ−1, in this case). □

Remark 2.4.3. Denote by h2 the weight 2 specialisation of h = θξ2(Z2) obtained by setting Z2 = 0, put

(2.30)
V† = T∨

f (1− r)⊗̂O(Ind
Q
Kξ

−1
1 ψ0ΨZ1

)⊗̂O(Ind
Q
Kξ

−1
2 ψ0)⊗ (ψ−1

0 Ψ
−1/2
Z1

◦ V )

∼=
(
T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 ψ1−c

0 Ψ1−c
V1

)
⊕

(
T∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

V1

)
and let κ(f̆ , ğ, h̆2) ∈ H1(Q,V†) be the projection associated to the level-N test vectors (f̆ , h̆, h̆2) of the

corresponding specialisation of the (f , g,h)-isotypic component of the class κ
(1)
m in (2.17) form = 1. Then,

writing

(2.31) κ(f̆ , ğ, h̆2) = (κ1(f̆ , ğ, h̆2), κ2(f̆ , ğ, h̆2))

according to the decomposition

H1(Q,V†) ∼= H1(Q, T∨
f (1− r)⊗̂Oξ

−1
1 ξ−1

2 ψ1−c
0 Ψ1−c

V1
)⊕H1(Q, T∨

f (1− r)⊗̂OInd
Q
Kξ

−1
1 ξ−c

2 Ψ1−c
V1

)

∼= H1
Iw(K[p∞], Tf,ξ1ξ2ψc−1

0
)⊕H1

Iw(K[p∞], Tf,ξ1ξc2 )

from (2.30) and Shapiro’s lemma, we see directly from the proof of Theorem 2.4.2 that

(2.32) (κ1(f̆ , ğ, h̆2), κ2(f̆ , ğ, h̆2)) = (zf,ξ1,ξ2,ψc−1
0 ,1,

czf,ξ1,ξ2,1,1).

3. Anticyclotomic Euler systems

In this section we show that the systems of Iwasawa cohomology classes constructed in Theorem 2.4.2,
which form an anticyclotomic Euler systems in the sense of Jetchev–Nekovář–Skinner [JNS], land in certain
Selmer groups defined in the style of Greenberg. We then record the bounds on these Selmer groups that
follow by applying their machinery to our construction.
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3.1. Selmer groups. Let f ∈ S2r(Γ0(Nf )) be a p-ordinary newform of weight 2r ≥ 2 with p ∤ Nf , and K
be an imaginary quadratic field in which p = pp̄ splits. Let χ be an anticyclotomic Hecke character of K
of infinity type (−j, j), and consider the conjugate self-dual GK-representation

Vf,χ := V ∨
f (1− r)⊗ χ−1.

Given a prime v | p ofK and aGKv -stable subspace F+
v (Vf,χ) ⊂ Vf,χ, we put F−

v (Vf,χ) = Vf,χ/F+
v (Vf,χ).

Definition 3.1.1. Let L be a finite extension of K, and fix F = {F+
v (Vf,χ)}v|p. The associated Greenberg

Selmer group SelF (L, Vf,χ) is defined by

SelF (L, Vf,χ) := ker

{
H1(L, Vf,χ)→

∏
w

H1(Lw, Vf,χ)

H1
F (Lw, Vf,χ)

}
,

where w runs over the finite primes of L, and the local conditions are given by

H1
F (Lw, Vf,χ) =

{
ker

{
H1(Lw, Vf,χ)→ H1(Lur

w , Vf,χ)
}

if w ∤ p,

ker
{
H1(Lw, Vf,χ)→ H1(Lw,F−

v (Vf,χ))
}

if w | v | p.

Given any lattice Tf,χ ⊂ Vf,χ, we let H1
F (Lw, Tf,χ) be the inverse image of H1

F (Lw, Vf,χ) under the
natural map H1(Lw, Tf,χ) → H1(Lw, Vf,χ), and define SelF (L, Tf,χ) in the same manner; and given any
Zp-extension L∞ =

⋃
n Ln of L, we put

SelF (L∞, Tf,χ) := lim←−
n

SelF (Ln, Tf,χ),

with limit with respect to corestriction, and also put SelF (L∞, Vf,χ) := SelF (L∞, Tf,χ)⊗Zp Qp (which is
independent of the chosen Tf,χ).

We shall be particularly interested in the following two instances of these definitions:

• The relaxed-strict Selmer group Selrel,str(L, Vf,χ) obtained by taking

F+
v (Vf,χ) =

{
Vf,χ if v = p,

0 if v = p̄.

• The ordinary Selmer group Selord,ord(L, Vf,χ). Since f is p-ordinary, upon restriction to GQp
⊂ GQ

the Galois representation V ∨
f fits into a short exact sequence

0→ V ∨,+
f → V ∨

f → V ∨,−
f → 0

with V ∨,±
f one-dimensional, and with the GQp

-action on V ∨,−
f being unramified (see §1.2.2). Then

Selord,ord(L, Vf,χ) is the Greenberg Selmer group defined by

(3.1) F+
v (Vf,χ) = V +

f,χ := V ∨,+
f (1− k/2)⊗ χ−1

for all v | p.
Following [BK90], we also define the Bloch–Kato Selmer group SelBK(L, Vf,χ) by

SelBK(L, Vf,χ) := ker

{
H1(L, Vf,χ)→

∏
w

H1(Lw, Vf,χ)

H1
f (Lw, Vf,χ)

}
,

where as before w runs over the finite primes of L, and the local conditions are given by

H1
f (Lw, Vf,χ) =

{
ker

{
H1(Lw, Vf,χ)→ H1(Lur

w , Vf,χ)
}

if w ∤ p,

ker
{
H1(Lw, Vf,χ)→ H1(Lw, Vf,χ ⊗Bcris)

}
if w | p,

with Bcris being Fontaine’s crystalline period ring. The local conditions H1
f (Lw, Tf,χ) ⊂ H1(Lw, Tf,χ) are

then defined by propagation.
For our later convenience, we now recall the well-known relation between these different Selmer groups.

Here we shall adopt the convention that the p-adic cyclotomic character has Hodge–Tate weight −1. Thus,



DIAGONAL CYCLES AND ANTICYCLOTOMIC IWASAWA THEORY OF MODULAR FORMS 29

since χ has infinity type (−j, j) (see §1.3.1 for our convention regarding infinity types), the p-adic avatar
of χ has Hodge–Tate weight j at p and −j at p̄. Since it will suffice for our applications, we suppose j ≥ 0.

Lemma 3.1.2. Suppose f has weight 2r ≥ 2. Then for any finite extension L of K we have

SelBK(L, Vf,χ) =

{
Selrel,str(L, Vf,χ) if j ≥ r,

Selord,ord(L, Vf,χ) if 0 ≤ j < r.

Proof. Combining the results of [Nek00, (3.1)-(3.2)] and [Fla90, Lem. 2, p. 125], for every prime w | v | p
of L/K/Q we have

H1
f (Lw, Vf,χ) = im

{
H1(Lw,Fil

1
v(Vf,χ))→ H1(Lw, Vf,χ)

}
,

where Fil1v(Vf,χ) ⊂ Vf,χ is a GKv -stable subspace (assuming it exists) such that the Hodge–Tate weights

of Fil1v(Vf,χ) (resp. Vf,χ/Fil
1
v(Vf,χ)) are all < 0 (resp. ≥ 0).

Now, the Hodge–Tate weights of V +
f,χ and V −

f,χ := Vf,χ/V
+
f,χ at the primes of K above p are given by:

V +
f,χ V −

f,χ

HT weight at p −j − r −j − 1 + r
HT weight at p̄ j − r j − 1 + r

and so we find Fil1p(Vf,χ) = Vf,χ and Fil1p̄(Vf,χ) = 0 when j ≥ r, and Fil1p(Vf,χ) = Fil1p̄(Vf,χ) = V +
f,χ when

0 ≤ j < r, yielding the equalities in the lemma. □

For Af,χ := HomZp(Tf,χ, µp∞), and a choice of Galois stable subspaces F = {F+
v (Vf,χ)}v|p, we define

the associated dual Selmer group SelF∗(L,Af,χ) by

SelF∗(L,Af,χ) := ker

{
H1(L,Af,χ)→

∏
w

H1(Lw, Af,χ)

H1
F∗(Lw, Af,χ)

}
,

where H1
F∗(Lw, Af,χ) is the orthogonal complement of H1

F (Lw, Tf,χ) under local Tate duality

H1(Lw, Tf,χ)×H1(Lw, Af,χ)→ Qp/Zp.

In particular, we find that:

• The dual Selmer group of Selrel,str(L, Tf,χ) consists of classes that are unramified outside p and
have the strict (resp. relaxed) condition at the primes w|p (resp. w|p̄); we shall denote this by
Selstr,rel(L,Af,χ).
• The dual Selmer group of Selord,ord(L, Tf,χ) consists of classes that are unramified outside p, and
land in the image of the natural map

H1(Lw,F
+
v (Af,χ))→ H1(Lw, Af,χ), F+

v (Af,χ) := HomZp(F
−
v (Tf,χ), µp∞),

for w | v | p; we shall denote this by Selord,ord(L,Af,χ).

3.2. Local conditions. We now determine the Selmer groups where the classes zf,ξ1,ξ2,ϕ,m and czf,ξ1,ξ2,ϕ,m
of Theorem 2.4.2 live.

Theorem 3.2.1. For any ξ1, ξ2, ϕ, and m as in Theorem 2.4.2, we have the inclusion

zf,ξ1,ξ2,ϕ,m ∈ Selrel,str(K[mp∞], Tf,ξ1ξ2ϕ),

czf,ξ1,ξ2,ϕ,m ∈ Selord,ord(K[mp∞], Tf,ξ1ξc2ϕ).

Proof. With notations as in the proof of Theorem 2.4.2, it suffices to check the result for zf,ξ1,ξ2,ψc−1
0 ,m

and czf,ξ1,ξ2,1,m; the result for arbitrary ϕ then follows by twisting.

We begin by explaining the case m = 1. Letting V† and κ(f̆ , ğ, h̆2) ∈ H1(Q,V†) be as in Remark 2.4.3,
by (2.32) we need to show the inclusions

(3.2) κ1(f̆ , ğ, h̆2) ∈ Selrel,str(K[p∞], Tf,ξ1ξ2ψc−1
0

), κ2(f̆ , ğ, h̆2) ∈ Selord,ord(K[p∞], Tf,ξ1ξ2).
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It follows from [BSV22, Cor. 8.2] that the class κ(f̆ , ğ, h̆2) lands in the balanced Selmer group Selbal(Q,V†)
of Definition 4.2.2 below. Restricted to GK , the GQ-representation V† decomposes as

(3.3) V†|GK =
(
T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 ψ1−c

0 Ψ1−c
V1

)
⊕

(
T∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

V1

)
,

where V1 = (1 + Z1)
1/2 − 1, and from we readily find that the local condition F bal

p (V†) at p cutting out
the balanced Selmer group corresponds to

F bal
p (V†|GK ) =

(
T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 ψ1−c

0 Ψ1−c
V1

)
F bal

p̄ (V†|GK ) = {0}

⊕
(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

V1

)
,

⊕
(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

V1

)
,

(3.4)

showing that the classes in (3.2) satisfy the right local conditions at the primes above p.
For the finite primes w ∤ p, we can give an argument that applies to all m. Since Vf,ξ1ξ2ψc−1

0
is conjugate

self-dual and pure of weight −1, we see that

H0(K[mps]w, Vf,ξ1ξ2ψc−1
0

) = H2(K[mps]w, Vf,ξ1ξ2ψc−1
0

) = 0

for all s ≥ 0, and therefore H1(K[mps]w, Vf,ξ1ξ2ψc−1
0

) = 0 by Tate’s local Euler characteristic formula.

This shows that H1(K[mps]w, Tf,ξ1ξ2ψc−1
0

) is torsion, and as a result the inclusion

resw(zf,ξ1,ξ2,ψc−1
0 ,m) ∈ lim←−

s

H1
f (K[mps]w, Tf,ξ1ξ2ψc−1

0
)

follows automatically. A similar argument shows that the classes czf,ξ1,ξ2,m are unramified at the primes
outside p, thereby concluding the proof of the inclusions (3.2) and hence the result for m = 1.

It remains to show that for general m, the classes in the statement satisfy the claimed local condition

at the primes above p. Specialising the class κ
(4)
f,ξ1,ξ2,m

in (2.26) to Z2 = 0, it suffices to show the result for

m = 1 with ξ1 replaced by ξ1η and ξ2 replaced by ξ2η
′, where characters η : H

(p)
m → µp∞ , η

′ : H
(p)
m → µp∞

have inverse central characters. We obtain classes κf,ξ1η,ξ2η′,m ∈ H1(Q,V†
η,η′), where

V†
η,η′ := T∨

f (1− r)⊗ (IndQKξ
−1
1 ηψ0ΨZ1)⊗ (IndQKξ

−1
2 η′ψ0)⊗ (ψ−1

0 Ψ
−1/2
Z1

◦ V ),

landing in Selbal(Q,V†
η,η′) as a consequence of [BSV22, Cor. 8.2]. Since the map ξ∆ in (2.7) has the effect

of projecting onto the first direct summand in the decomposition

(3.5) V†
η,η′ |GK =

(
T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 ηη′ψ1−c

0 Ψ1−c
V1

)
⊕
(
T∨
f (1− r)⊗ ξ−1

1 ξ−c
2 η(η′)cΨ1−c

V1

)
,

from the description of F bal
p (V†

η,η′ |GK ) and F bal
p̄ (V†

η,η′ |GK ) analogous to (3.4), and letting η and η′ vary,
the inclusions

resw(zf,ξ1,ξ2,ψc−1
0 ,m) ∈

{
H1

Iw(K[mp∞]w, Tf,ξ1ξ2ψc−1
0

) if w | p,
{0} if w | p̄

follow, concluding the proof of the first inclusion in the theorem. Finally, the inclusions

resw(
czf,ξ1,ξ2,m) ∈ H1

Iw(K[mp∞],F+
w (Tf,ξ1ξ2))

for all w | p can be shown in the same manner, now specialising the class cκ
(4)
f,ξ1,ξ2,m

in (2.29) to Z2 = 0

and characters ν, ν′ : H
(p)
m → µp∞ with inverse central characters, and using the fact that the map ξc∆ in

(2.14) has the effect of projecting onto the second direct summand in the decomposition (3.5). □

3.3. Applying the general machinery. In this section we give some direct arithmetic applications that
follow by applying to the classes of Theorem 2.4.2 the general Euler system machinery of Jetchev–Nekovář–
Skinner [JNS]. Later in the paper, by exploiting the relation between the bottom class of our Euler systems
and special values of complex and p-adic L-functions, we shall deduce from these results applications to
the Bloch–Kato conjecture and the anticyclotomic Iwasawa main conjecture.
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For ξ1, ξ2, ϕ and m as in Theorem 2.4.2, denote by

zf,ξ1,ξ2,ϕ,m ∈ Selrel,str(K[m], Tf,ξ1ξ2ϕ),
czf,ξ1,ξ2,ϕ,m ∈ Selord,ord(K[m], Tf,ξ1ξc2ϕ),

the image of zf,ξ1,ξ2,ϕ,m,
czf,ξ1,ξ2,ϕ,m under the projections

Selrel,str(K[mp∞], Tf,ξ1ξ2ϕ)→ Selrel,str(K[m], Tf,ξ1ξ2ϕ),

Selord,ord(K[mp∞], Tf,ξ1ξc2ϕ)→ Selord,ord(K[m], Tf,ξ1ξc2ϕ),

respectively, and put

zf,ξ1,ξ2,ϕ := zf,ξ1,ξ2,ϕ,1 ∈ Selrel,str(K,Tf,ξ1ξ2ϕ),
czf,ξ1,ξ2,ϕ := czf,ξ1,ξ2,ϕ,1 ∈ Selord,ord(K,Tf,ξ1ξc2ϕ)

(recall that we assume (cn), so K[1] = K).

3.3.1. Rank one results.

Theorem 3.3.1. Let the hypotheses be as in Theorem 2.4.2. Assume also that f is not of CM-type. Then
the following hold:

(I) If zf,ξ1,ξ2,ϕ is non-torsion, then Selrel,str(K,Vf,ξ1ξ2ϕ) is one-dimensional.
(II) If czf,ξ1,ξ2,ϕ is non-torsion, then Selord,ord(K,Vf,ξ1ξc2ϕ) is one-dimensional.

Proof. By Theorem 2.4.2 and Theorem 3.2.1, the system of classes

(3.6)
{
zf,ξ1,ξ2,ϕ,m ∈ Selrel,str(K[m], Tf,ξ1ξ2ϕ)

}
m

forms an anticyclotomic Euler system in the sense of Jetchev–Nekovář–Skinner [JNS] for the relaxed-strict
Greenberg Selmer group. Hence from their general results1 the one-dimensionality of Selrel,str(K,Vf,ξ1ξ2ϕ)
is implied by the nonvanishing of zf,ξ1,ξ2,ϕ ∈ Selrel,str(K,Vf,ξ1ξ2ϕ) provided the GK-representation V :=
Vf,ξ1ξ2ϕ satisfies the following hypotheses:

(i) V is absolutely irreducible;
(ii) There is an element σ ∈ GK fixing K(µp∞ , (O×

K)1/p
∞
) such that V/(σ − 1)V is one-dimensional;

(iii) There is an element γ ∈ GK fixing K(µp∞ , (O×
K)1/p

∞
) such that V γ=1 = 0.

Since f is not of CM-type, hypotheses (i)–(iii) follow easily from Momose’s big image results [Mom81]
as in [LLZ15, Prop. 7.1.4], whence part (I) of the theorem holds; the proof of part (II) is the same. □

3.3.2. Iwasawa-theoretic results. Recall that K−
∞ denotes the anticyclotomic Zp-extension of K, and put

Λ−
K = OJGal(K−

∞/K)K. Let

zf,ξ1,ξ2,ϕ := zf,ξ1,ξ2,ϕ,1 ∈ Selrel,str(K
−
∞, Tf,ξ1ξ2ϕ),

czf,ξ1,ξ2,ϕ := czf,ξ1,ξ2,ϕ,1 ∈ Selord,ord(K
−
∞, Tf,ξ1ξc2ϕ)

be the bottom classes of the systems {zf,ξ1,ξ2,ϕ,m}m and {czf,ξ1,ξ2,ϕ,m}m from Theorem 2.4.2, where the
inclusions follow from Theorem 3.2.1.

Notation 3.3.2. As in [LLZ15, §7.1], we shall say that f has big image if the image of GQ in AutO(T
∨
f )

contains a conjugate of SL2(Zp).

We also note that, by a theorem of Ribet [Rib85], if f is not of CM-type, then it has big image at P all
but finitely many primes P of L.

Put

Xstr,rel(K
−
∞, Af,ξ1ξ2ϕ) = HomZp

(
lim−→
n

Selstr,rel(K
−
n , Af,ξ1ξ2ϕ),Qp/Zp

)
,

where K−
n denotes the subextension of K−

∞ of with [K−
n : K] = pn, and likewise for Xord,ord(K

−
∞, Af,ξ1ξc2ϕ).

1See also [ACR23, §8.1] for an exposition of the relevant results from [JNS], which at the time of writing is not publicly

available yet.
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The next result can be seen as a divisibility towards an anticyclotomic Iwasawa main conjecture ‘without
L-functions’.

Theorem 3.3.3. Let the hypotheses be as in Theorem 2.4.2, and assume in addition that f has big image.
Then the following hold:

(I) If zf,ξ1,ξ2,ϕ is non-torsion, then Xstr,rel(K
−
∞, Af,ξ1ξ2ϕ) and Selrel,str(K

−
∞, Tf,ξ1ξ2ϕ) both have Λ−

K-
rank one, and we have the divisibility

charΛ−
K
(Xstr,rel(K

−
∞, Af,ξ1ξ2ϕ)tors) ⊃ charΛ−

K

(
Selrel,str(K

−
∞, Tf,ξ1ξ2ϕ)

Λ−
K · zf,ξ1,ξ2,ϕ

)2

in Λ−
K .

(II) If czf,ξ1,ξ2,ϕ is non-torsion, then Xord,ord(K
−
∞, Af,ξ1ξc2ϕ) and Selord,ord(K

−
∞, Tf,ξ1ξc2ϕ) both have Λ−

K-
rank one, and we have the divisibility

charΛ−
K
(Xord,ord(K

−
∞, Af,ξ1ξc2ϕ)tors) ⊃ charΛ−

K

(
Selord,ord(K

−
∞, Tf,ξ1ξc2ϕ)

Λ−
K · czf,ξ1,ξ2,ϕ

)2

in Λ−
K .

Here, in both (I) and (II), the subscript tors denotes the Λ−
K-torsion submodule.

Proof. By Theorem 2.4.2 and Theorem 3.2.1, the system of classes

(3.7)
{
zf,ξ1,ξ2,ϕ,m ∈ Selrel,str(K[mp∞], Tf,ξ1ξ2ϕ)

}
m

forms a Λ−
K-adic anticyclotomic Euler system in the sense of Jetchev–Nekovář–Skinner for the relaxed-strict

Selmer group, and so by the general results of [JNS] (see [ACR23, §8.1] for a summary) the non-torsionness
of zf,ξ1,ξ2,ϕ implies the conclusions in part (I) of the theorem provided the GK-module T = Tf,ξ1ξ2ϕ satisfies
the following hypotheses:

(i) T̄ := T/PT is absolutely irreducible;
(ii) There is an element σ ∈ GK fixing K(µp∞ , (O×

K)1/p
∞
) such that T/(σ− 1)T is free of rank 1 over

O;
(iii) There is an element γ ∈ GK fixing K(µp∞ , (O×

K)1/p
∞
) and acting as multiplication by a scalar

aγ ̸= 1 on T̄ ;

but these are easily checked under our assumption that f has big image (see [LLZ15, Prop. 7.1.6]). This
shows part (I) of the theorem, and part (II) follows in the same manner. □
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Part 2. Applications

4. Preliminaries

In this section, we briefly review the unbalanced triple product p-adic L-function constructed in [Hsi21]
and their associated Selmer groups. We also recall from [BSV22] the explicit reciprocity law for diagonal
classes.

4.1. Triple product p-adic L-function.

4.1.1. Hida families. Let I be a normal domain, finite flat over

Λ := OJ1 + pZpK,

where O is the ring of integers of a finite extension of LP of Qp. (Here, as in §2, LP denotes the completion

of a number field L at a prime P above p induced by our fixed embedding ip : Q ↪→ Qp.) For an integer

N > 0 with p ∤ N , and a Dirichlet character χ : (Z/NpZ)× → O×, we denote by So(N,χ, I) ⊂ IJqK the
space of ordinary I-adic cusp forms of tame level N and branch character χ as defined in [Hsi21, §3.1].

Denote by X+
I ⊂ Spec I(Qp) the set of arithmetic points of I, consisting of the ring homomorphisms

Q : I → Qp such that Q|1+pZp is given by z 7→ zkQ−2ϵQ(z) for some kQ ∈ Z≥2 called the weight of Q
and ϵQ(z) ∈ µp∞ . (Note that here we center the weight map at weight 2, rather than weight 0 as done in
loc. cit.). As in [Hsi21, §3.1], we say that f =

∑∞
n=1 an(f)q

n ∈ So(N,χ, I) is a primitive Hida family if for

every Q ∈ X+
I the specialisation fQ gives the q-expansion of a P-ordinary p-stabilised newform of weight

kQ and tame conductor N . Attached to such f we let Xcls
I be the set of ring homomorphisms Q as above

with kQ ∈ Z≥1 such that fQ is the q-expansion of a classical modular form (thus Xcls
I contains X+

I ).
For f a primitive Hida family of tame level N , we let

(4.1) ρf : GQ → AutI(Vf ) ≃ GL2(I)

denote the associated Galois representation, which here we take to be the dual of that in [Hsi21, §3.2]; in
particular, the determinant of ρf is χI · εcyc in the notations of loc. cit., where εcyc is the p-adic cyclotomic
character. A priori, ρf is just realised over in the fraction field Frac(I), but we shall always assume that its
associated residual representation ρ̄f : GQ → GL2(κI), where κI denotes the residue field of I, is absolutely
irreducible, in which case an integral model as in (4.1) can always be found.

Restricting to GQp
, the Galois representation Vf fits into a short exact sequence

0→ V +
f → Vf → V −

f → 0,

where the quotient V −
f is free of rank one over I, with the GQp -action given by the unramified character

sending an arithmetic Frobenius Frob−1
p to ap(f), see [Wil88, Thm. 2.2.2].

Denote by T(N, I) the Hecke algebra acting on ⊕χSo(N,χ, I), with χ running over the Dirichlet char-
acters modulo Np. Associated with f there is a I-algebra homomorphism

λf : T(N, I)→ I

factoring through a local component Tm. Following [Hid88a], we define the congruence ideal C(f) of f by

C(f) := λf (AnnTm
(kerλf )) ⊂ I.

If ρ̄f is absolutely irreducible and p-distinguished, it follows from the results of [Wil95] and [Hid88a] that
C(f) is generated by a nonzero element ηcongf ∈ I.

4.1.2. Triple products of Hida families. Let

(f , g,h) ∈ So(Nf , χf , If )× So(Ng, χg, Ig)× So(Nh, χh, Ih)

be a triple of primitive Hida families with

(sd-triple) χfχgχh = ω2a for some a ∈ Z,
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where ω is the Teichmüller character. Put

R = If ⊗̂OIg⊗̂OIh,

which is a finite extension of the three-variable Iwasawa algebra Λ⊗̂OΛ⊗̂OΛ.
Let X+

R ⊂ SpecR(Qp) be the weight space of R given by

X+
R :=

{
Q = (Q0, Q1, Q2) ∈ X+

If × Xcls
Ig × Xcls

Ih : kQ0
+ kQ1

+ kQ2
≡ 0 (mod 2)

}
.

This can be written as the disjoint union X+
R = Xbal

R ⊔ Xf
R ⊔ Xg

R ⊔ Xh
R, where

Xbal
R :=

{
Q ∈ X+

R : kQ0
+ kQ1

+ kQ2
> 2kQi for all i = 0, 1, 2

}
is the set of balanced weights, i.e. where each weight kQi is smaller than the sum of the other two, and

Xf
R :=

{
Q ∈ X+

R : kQ0
≥ kQ1

+ kQ2

}
,

Xg
R :=

{
Q ∈ X+

R : kQ1 ≥ kQ0 + kQ2

}
,

Xh
R :=

{
Q ∈ X+

R : kQ2
≥ kQ0

+ kQ1

}
,

are the sets of f -, g-, and h-unbalanced weights, respectively.
Let V = Vf ⊗̂OVg⊗̂OVh be the triple tensor product Galois representation attached to (f , g,h). Write

the determinant of V in the form detV = X 2εcyc (note that this is possible by (sd-triple) and p > 2), and
put

(4.2) V† := V ⊗X−1,

which is a self-dual twist of V.

4.1.3. Unbalanced triple product p-adic L-function. Define the rank four GQp
-invariant subspace F f

p (V
†)

of V† by

(4.3) F f
p (V

†) := V +
f ⊗̂OVg⊗̂OVh ⊗X−1,

and for any Q = (Q0, Q1, Q2) ∈ Xf
R denote by F f

p (V
†
Q) ⊂ V†

Q the corresponding specialisations.

For a rational prime ℓ, let εℓ(V
†
Q) be the epsilon factor attached to the local representation V†

Q|GQℓ

(see [Tat79, p. 21]), and assume that

(sgn) for some Q ∈ Xf
R, we have εℓ(V

†
Q) = +1 for all prime factors ℓ of NfNgNh.

As explained in [Hsi21, §1.2], it is known that condition (sgn) is independent of Q, and it implies that the
sign in the functional equation for the triple product L-function (with center at s = 0)

L(V†
Q, s)

is +1 (resp. −1) for all Q ∈ Xf
R ∪ Xg

R ∪ Xh
R (resp. Q ∈ Xbal

R ).

Theorem 4.1.1. Let (f , g,h) be a triple of primitive Hida families satisfying conditions (sd-triple) and
(sgn). Assume in addition that

• gcd(Nf , Ng, Nh) is square-free;
• ρ̄f is absolutely irreducible and p-distinguished;

and fix a generator ηcongf of the congruence ideal of f . Then there exists a unique element

L f
p (f , g,h) ∈ R

such that for all Q = (Q0, Q1, Q2) ∈ Xf
R of weight (k0, k1, k2) with ϵQ0

= 1 we have

(
L f
p (f , g,h)(Q)

)2
= ΓV†

Q
(0) ·

L(V†
Q, 0)

(
√
−1)2k0 · Ω2

fQ0

· Ep(F f
p (V

†
Q)) ·

∏
q∈Σexc

(1 + q−1)2,



DIAGONAL CYCLES AND ANTICYCLOTOMIC IWASAWA THEORY OF MODULAR FORMS 35

where:

• ΓV†
Q
(0) = ΓC(cQ)ΓC(cQ + 2− k1 − k2)ΓC(cQ + 1− k1)ΓC(cQ + 1− k2), with

cQ = (k0 + k1 + k2 − 2)/2

and ΓC(s) = 2(2π)−sΓ(s);
• ΩfQ0

is the canonical period

ΩfQ0
:= (−2

√
−1)k0+1 ·

∥f◦
Q0
∥2Γ0(Nf )

ηcongfQ0

·
(
1−

χ′
f (p)p

k0−1

α2
Q0

)(
1−

χ′
f (p)p

k0−2

α2
Q0

)
,

with f◦
Q0
∈ Sk0(Γ0(Nf )) the newform of conductor Nf associated with fQ0

, χ′
f the prime-to-p part

of χf , and αQ0 the specialisation of ap(f) ∈ I×f at Q0;

• Ep(F f
p (V

†
Q)) is the modified p-Euler factor

Ep(F f
p (V

†
Q)) :=

Lp(F f
p (V

†
Q), 0)

εp(F
f
p (V

†
Q)) · Lp(V

†
Q/F

f
p (V

†
Q), 0)

· 1

Lp(V
†
Q, 0)

,

and Σexc is an explicitly defined subset of the prime factors of NfNgNh, [Hsi21, p. 416].

Proof. This is Theorem A in [Hsi21], which in fact proves a more general interpolation formula. □

Remark 4.1.2. The construction of the p-adic L-function L f
p (f , g,h) is based on Hida’s p-adic Rankin–

Selberg method [Hid88b], and the proof of the above exact interpolation formula relies on a suitable choice

of test vectors (f̆⋆, ğ⋆, h̆⋆) for (f , g,h) of level N = lcm(Nf , Ng, Nh). In general (without any additional

hypotheses on ρ̄f ), for any choice (f̆ , ğ, h̆) of level-N test vectors, Hida’s method produces an element

(4.4) L f
p (f̆ , ğ, h̆) ∈ Frac(If )⊗̂OIg⊗̂OIh,

and by virtue of the proof of Jacquet’s conjecture by Harris–Kudla [HK91] (see also [DR14, Rem. 4.8]),

for any fixed Q
0
∈ X f

R, if the central L-value L(V†
Q

0

, 0) is nonzero, one can find (f̆ , ğ, h̆) such that

L f
p (f̆ , ğ, h̆)(Q

0
) ̸= 0.

In terms of (4.4), under the hypotheses on ρ̄f in Theorem 4.1.1, the p-adic L-function L f
p (f , g,h) is given

by ηcongf ·L f
p (f̆⋆, ğ⋆, h̆⋆).

4.2. Triple product Selmer groups. Let V† = V ⊗ X−1 be the self-dual twist of the Galois represen-
tation associated to a triple of primitive Hida families (f , g,h) satisfying (sd-triple).

Definition 4.2.1. Put

F bal
p (V†) :=

(
Vf ⊗ V +

g ⊗ V +
h + V +

f ⊗ Vg ⊗ V
+
h + V +

f ⊗ V
+
g ⊗ Vh

)
⊗X−1,

and define the balanced local condition H1
bal(Qp,V

†) by

H1
bal(Qp,V

†) := im
(
H1(Qp,F

bal
p (V†))→ H1(Qp,V

†)
)
.

As in (4.3), put F f
p (V

†) :=
(
V +
f ⊗Vg⊗Vh

)
⊗X−1, and define the f -unbalanced local condition H1

f (Qp,V
†)

by

H1
f (Qp,V

†) := im
(
H1(Qp,F

f
p (V

†))→ H1(Qp,V
†)
)
.

It is easy to see that the maps appearing in these definitions are injective, and in the following we shall
use this to identify H1

?(Qp,V
†) with H1(Qp,F ?

p (V
†)) for ? ∈ {bal,f}.
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Definition 4.2.2. Let ? ∈ {bal,f}, and define the Selmer group Sel?(Q,V†) by

Sel?(Q,V†) := ker

{
H1(Q,V†)→ H1(Qp,V

†)

H1
?(Qp,V†)

×
∏
v ̸=p

H1(Qnr
v ,V

†)

}
.

We call Selbal(Q,V†) (resp. Self (Q,V†)) the balanced (resp. f -unbalanced) Selmer group.

Let A† = HomZp(V
†, µp∞) and for ? ∈ {bal,f} define H1

?∗(Qp,A
†) ⊂ H1(Qp,A

†) to be the orthogonal

complement of H1
?(Qp,V

†) under the local Tate duality

H1(Qp,V
†)×H1(Qp,A

†)→ Qp/Zp.

We then define the balanced and f -unbalanced Selmer groups with coefficients in A† by

Sel?(Q,A†) := ker

{
H1(Q,A†)→ H1(Qp,A

†)

H1
?∗(Qp,A†)

×
∏
v ̸=p

H1(Qnr
v ,A

†)

}
,

and let X?(Q,A†) = HomZp(Sel
?(Q,A†),Qp/Zp) denote the Pontryagin dual of Sel?(Q,A†).

4.3. Explicit reciprocity law. We continue to denote by (f , g,h) a triple of primitive Hida families as
in §4.1.2 satisfying (sd-triple), and put N = lcm(Nf , Ng, Nh). Let

(4.5) κ(f , g,h) ∈ H1(Q,V†(N ))

be the big diagonal class constructed in [BSV22, §8.1], where V†(N ) denotes a free R-module isomorphic
to finitely many copies of V†.

Remark 4.3.1. By construction, κ(f , g,h) is the same as the (f , g,h)-isotypic projection of the class

κ
(1)
m in (2.19) with m = 1.

The definition of the Selmer groups in §4.2 extends immediately to V†(N ), and by Corollary 8.2 in

loc. cit. one knows that κ(f , g,h) ∈ Selbal(Q,V†(N )).
Put

F 3
p (V

†) = V +
f ⊗̂OV

+
g ⊗̂OV

+
h ⊗X

−1 ⊂ V†.

Then clearly F 3
p (V

†) ⊂ F bal
p (V†), with quotient given by

(4.6) F bal
p (V†)/F 3

p (V
†) ∼= Vgh

f ⊕Vfh
g ⊕Vfg

h ,

where

(4.7)

Vgh
f = V −

f ⊗̂OV
+
g ⊗̂OV

+
h ⊗X

−1,

Vfh
g = V +

f ⊗̂OV
−
g ⊗̂OV

+
h ⊗X

−1,

Vfg
h = V +

f ⊗̂OV
+
g ⊗̂OV

−
h ⊗X

−1.

We similarly define the level-N version F bal
p (V†)(N ), Vgh

f (N ), etc..

4.3.1. Three-variable reciprocity law. As explained in [BSV22, §7.3] (see also [DR22, §5.1]), for every choice

of level-N test vectors (f̆ , ğ, h̆) for (f , g,h) one can deduce from results in [KLZ17] the construction of an
injective three-variable p-adic regulator map with pseudo-null cokernel

(4.8) Logf
(f̆ ,ğ,h̆)

: H1(Qp,V
gh
f (N ))→ C(f)−1If ⊗̂OIg⊗̂OIh,
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where C(f) ⊂ If is the congruence ideal of f , characterised by the property that for all Z ∈ H1(Qp,V
gh
f (N ))

and all points Q = (Q0, Q1, Q2) ∈ X+
R of weight (k0, k1, k2) with ϵQi = 1 (i = 0, 1, 2) we have

Logf
(f̆ ,ğ,h̆)

(Z)(Q) = (p− 1)αQ0

(
1− βQ0

αQ1
αQ2

pcQ

)(
1− αQ0

βQ1
βQ2

pcQ

)−1

×


(−1)

cQ−k0

(cQ−k0)! ·
〈
logp(ZQ), ηf̆Q0

⊗ ωğQ1
⊗ ωh̆Q2

〉
dR
, if Q ∈ Xbal

R ,

(k0 − cQ − 1)! ·
〈
exp∗p(ZQ), ηf̆Q0

⊗ ωğQ1
⊗ ωh̆Q2

〉
dR
, if Q ∈ Xf

R.

Here,

• cQ = (k0 + k1 + k2 − 2)/2 is as in Theorem 4.1.1;

• αQ0 denotes the specialisation of ap(f) at Q0 and we put βQ0 = χ′
f (p)p

k0−1α−1
Q0

; and (αQ1 , βQ1)

(resp. (αQ2 , βQ2)) are defined likewise with g (resp. h) in place of f ;
• logp and exp∗p are the Bloch–Kato logarithm and dual exponential maps as reviewed in [BSV22,
pp. 51-52];

• ηf̆Q0
(resp. ωğQ1

, ωh̆Q2
) is the differential attached to f̆Q0 (resp. ğQ1 , h̆Q2) as in [BSV22, Eq. (30)]

(resp. [BSV22, Eq. (34)]); and
• ⟨−,−⟩dR denotes the de Rham pairing of [BSV22, Eq. (32)].

Denote by resp(κ(f , g,h))f the image of κ(f , g,h) under natural maps

(4.9)
Selbal(Q,V†(N ))

resp−−→ H1(Qp,F
bal
p (V†(N )))→ H1(Qp,F

bal
p (V†(N ))/F 3

p (V
†(N )))

→ H1(Qp,V
gh
f (N ))

arising from the restriction at p and the projection onto the first direct summand in (4.6).

Theorem 4.3.2. Let (f , g,h) be a triple of primitive Hida families satisfying (sd-triple). Then for every

triple (f̆ , ğ, h̆) of level-N test vectors for (f , g,h) we have

Logf
(f̆ ,ğ,h̆)

(resp(κ(f , g,h))f ) = L f
p (f̆ , ğ, h̆),

where L f
p (f̆ , ğ, h̆) is as in (4.4).

Proof. This is Theorem A in [BSV22] (see also [DR22, Thm. 5.1]). □

Remark 4.3.3. In particular, if ρ̄f is absolutely irreducible and p-distinguished, then Theorem 4.3.2 gives

(4.10) ηcongf · Logf
(f̆⋆,ğ⋆,h̆⋆)

(resp(κ(f , g,h))f ) = L f
p (f , g,h),

where L f
p (f , g,h) is as in Theorem 4.1.1. For the proof of the arithmetic applications later in this paper,

in addition to (4.10) we shall use its counterpart in the g-unbalanced case.

5. Definite case

In this section we deduce our applications to the Bloch–Kato conjecture and the Iwasawa main conjecture
for anticyclotomic twists of f/K in the case where ϵ(f/K) = +1.

Throughout this section, we let f =
∑∞
n=1 anq

n ∈ S2r(Γ0(Nf )), with p ∤ Nf , be a p-ordinary newform
of weight 2r ≥ 2 defined over O, and K be an imaginary quadratic field satisfying (spl) and (cn).

5.1. Anticyclotomic p-adic L-functions. Recall that Γ− = Gal(K−
∞/K) denotes the Galois group of

the anticyclotomic Zp-extension of K, and γ− ∈ Γ− is a topological generator. Write

Nf = N+N−

with N+ (resp. N−) divisible only by primes which are split (resp. inert) in K, and fix an ideal N+ ⊂ OK
with OK/N+ ≃ Z/N+Z.
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Theorem 5.1.1. Let χ0 be an O-valued ring class character of K of conductor cOK , and suppose:

(i) (pNf , cDK) = 1,
(ii) N− is the squarefree product of an odd number of primes.

Then there exists a unique element ΘBD
p (f/K, χ0)(W ) ∈ OJW K such that for every character ϕ of Γ− of

infinity type (−j, j) with 0 ≤ j < r and conductor pn, we have

ΘBD
p (f/K, χ0)

2(ϕ(γ−)−1) =
p(2r−1)n

α2n
p

·Γ(r+j)Γ(r−j)·Ep(f, χ0ϕ)
2 ·L(f/K, χ0ϕ, r)

(2π)2r · Ωf,N−
·u2K

√
DKχ0ϕ(σN+)·εp,

where:

• αp ∈ O× is the p-adic unit root of x2 − apx+ p2r−1,

• Ep(f, χ0ϕ) =

{
(1− α−1

p pr−1χ0ϕ(p))(1− αppr−1χ0ϕ(p)) if n = 0,

1 if n > 0,

• Ωf,N− = 22r · ∥f∥2Γ0(Nf )
· η−1
f,N− is the Gross period of f (see [Hsi21, p. 524]),

• uK = |O×
K |/2,

• σN+ ∈ Γ−
∞ is Artin symbol of N+,

• εp ∈ {±1} is the local root number of f at p.

Proof. This is Theorem A in [CH18b] (as extended in [Hun17, Thm. A] for c > 1), extending and refining
a construction in [BD96] in weight 2. □

5.2. Factorisation of triple product p-adic L-functions. Let f ∈ So(Nf , ω2r−2, I) be the primitive
Hida family specialising to the ordinary p-stabilisation of f at an arithmetic point Q0 ∈ X+

I of weight 2r.
Let ξ1, ξ2 be ray class characters of K of conductors dividing the ideals f1, f2 ⊂ OK coprime to p satisfying
(sd), and let

(5.1) (g,h) = (θξ1(Z1),θξ2(Z2)) ∈ OJZ1KJqK×OJZ2KJqK

be the CM Hida families attached to ξ1, ξ2 as in (2.16). Then (f , g,h) satisfies conditions (sd-triple) and
(sgn). Assume also that

(irr-dist) ρ̄f is absolutely irreducible and p-distinguished,

so the hypotheses in Theorem 4.1.1 are satisfied. The ensuing f -unbalanced triple product p-adic L-
function L f

p (f , g,h) is an element in R = I⊗̂OOJZ1K⊗̂OOJZ2K ≃ IJZ1, Z2K, and in the following we
let

(5.2) L f
p (f, g,h) ∈ OJZ1, Z2K

denote its image under the natural map IJZ1, Z2K→ OJZ1, Z2K defined by Q0. More generally (in partic-
ular, without assuming (irr-dist)), for any choice of level-N test vectors, we let

(5.3) L f
p (f̆ , ğ, h̆) ∈ LP ⊗O OJZ1, Z2K

be the image of (4.4) under the map induced by Q0.

Proposition 5.2.1. Assume that N− is the square-free product of an odd number of primes. Set

Si = u2(1 + Zi)− 1

for i = 1, 2, and

W1 = u−1(1 + S1)
1/2(1 + S2)

1/2 − 1, W2 = (1 + S1)
1/2(1 + S2)

−1/2 − 1.

Then

L f
p (f, g,h)(S1, S2) = ±w ·ΘBD

p (f/K, ξ1ξ2)(W1) ·ΘBD
p (f/K, ξ1ξ

c
2)(W2) ·

ηcongf

ηf,N−
,

where w is a unit in OJZ1, Z2K⊗Zp Qp.
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Proof. This is an immediate extension of Proposition 8.1 in [Hsi21], where the case ξ2 = ξ−1
1 is treated (and

where the weight map is centered at 0 rather than 2, accounting for the change of variables from Zi to Si).
The need to invert p in the above equality arises from the term

∏
q∈Σexc

(1 + q−1)2 in Theorem 4.1.1. □

5.3. Selmer group decompositions. Assume further that the characters ξ1 and ξ2 satisfy (dist), so the
associated big Galois representations Vg and Vh are such that

(5.4) Vg ∼= IndQK(ξ−1
1 ψ0ΨZ1

), Vh ∼= IndQK(ξ−1
2 ψ0ΨZ2

),

where ΨZi and ψ0 = Ψu−1 are as in §2.4.1.
Recall from §1.2 that the p-adic Galois representation V ∨

f associated to f satisfies det(V ∨
f ) = ε2r−1

cyc . On

the other hand, det(Vg ⊗ Vh) = ψ2
0ΨZ1

ΨZ2
◦ V . Thus, writing V†

Q0
for the specialization of V† to Q0 we

find

(5.5)
V†
Q0
≃ T∨

f ⊗ (IndQKξ
−1
1 ψ0ΨZ1

)⊗ (IndQKξ
−1
2 ψ0ΨZ2

)⊗ ε1−rcyc (ψ
−1
0 Ψ

−1/2
Z1

Ψ
−1/2
Z2

◦ V )

≃
(
T∨
f (1− r)⊗ IndQK(ξ−1

1 ξ−1
2 ψ1−c

0 Ψ1−c
V1

)
)
⊕

(
T∨
f (1− r)⊗ IndQK(ξ−1

1 ξ−c
2 Ψ1−c

W2
)
)
,

where we put

(5.6) V1 = (1 + Z1)
1/2(1 + Z2)

1/2 − 1 = u−1(1 +W1)− 1,

(previously, in §2.4.3, we let Z2 = 0 so V1 = (1 + Z1)
1/2 − 1) and W1,W2 are as in Proposition 5.2.1. In

particular, since (5.6) gives

(5.7) Ψ1−c
W1

= Ψ1−c
u−1Ψ

1−c
V1

= ψ1−c
0 Ψ1−c

V1

(see §2.4.1 for the second equality), we get

(5.8) H1(Q,V†
Q0

) ≃ H1(K,T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕H1(K,T∨

f (1− r)⊗ ξ−1
1 ξ−c

2 Ψ1−c
W2

)

by Shapiro’s lemma.

Proposition 5.3.1. Under (5.8), the balanced Selmer group Selbal(Q,V†
Q0

) decomposes as

Selbal(Q,V†
Q0

) ≃ Selrel,str(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕ Selord,ord(K,T

∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
),

and the f -unbalanced Selmer group Self (Q,V†
Q0

) decomposes as

Self (Q,V†
Q0

) ≃ Selord,ord(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕ Selord,ord(K,T

∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
).

Proof. From (5.5) we see that the balanced local condition is given by

(5.9)
F bal
p (V†

Q0
) ≃

(
T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕

(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
⊕

(
T∨,+
f (1− r)⊗ ξ−c

1 ξ−1
2 Ψc−1

W2

)
.

Put
Ṽ†
Q0

=
(
T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
,

so by (5.5) we have

(5.10) H1(Q,V†
Q0

) ≃ H1(K, Ṽ†
Q0

).

Then from (5.9) we obtain

F bal
p (Ṽ†

Q0
) ≃

(
T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
F bal

p̄ (Ṽ†
Q0

) ≃ {0}

⊕
(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
,

⊕
(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
,

which yields the claimed description of Selbal(Q,V†
Q0

). Similarly, we find that the f -unbalanced local
condition is given by

F f
p (Ṽ

†
Q0

) ≃
(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕

(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
,

F f
p̄ (Ṽ

†
Q0

) ≃
(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕

(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
,
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from where the claimed description of Self (Q,V†
Q0

) follows. □

As a consequence, we also obtain the following decomposition for the Selmer groups with coefficients in

A†
Q0

= HomZp(V
†
Q0
, µp∞), mirroring in the case of Self (Q,A†

Q0
) the factorisation of p-adic L-functions in

Proposition 5.2.1.

Corollary 5.3.2. The balanced Selmer group Selbal(Q,A†
Q0

) decomposes as

Selbal(Q,A†
Q0

) ≃ Selstr,rel(K,Af (r)⊗ ξ1ξ2Ψc−1
W1

)⊕ Selord,ord(K,Af (r)⊗ ξ1ξc2Ψc−1
W2

),

where Af (r) = HomZp(T
∨
f (1− r), µp∞); and the f -unbalanced Selmer group Self (Q,A†

Q0
) decomposes as

Self (Q,A†
Q0

) ≃ Selord,ord(K,Af (r)⊗ ξ1ξ2Ψc−1
W1

)⊕ Selord,ord(K,Af (r)⊗ ξ1ξc2Ψc−1
W2

).

Proof. This is immediate from Proposition 5.3.1 and local Tate duality. □

5.4. Explicit reciprocity law. Now, we put

V† = V†
Q0
⊗OJZ1,Z2K OJZ1, Z2K/(Z2),

where we let h2 be the weight 2 CM form obtained by specialising h = θξ2(Z2) to Z2 = 0, and let

(5.11) κ(f, g, h2) ∈ H1(Q,V†(N ))

be the resulting 1-variable specialisation of the big diagonal class κ(f , g,h) in (4.5). Likewise, we denote
by L f

p (f, g, h2) the image of (5.2) in OJZ1, Z2K/(Z2) ≃ OJZ1K, and similarly for any choice of level-N test
vectors we let

L f
p (f̆ , ğ, h̆2) ∈ LP ⊗O OJZ1K

be the natural image of (5.3). Since we have the inclusion κ(f, g, h2) ∈ Selbal(Q,V†(N )) as a consequence
of [BSV22, Cor. 8.2], we can write

(5.12) κ(f, g, h2) = (κ1(f, g, h2), κ2(f, g, h2))

according to the decomposition from Proposition 5.3.1; in particular, we have

(5.13) κ1(f, g, h2) ∈ Selrel,str(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
(N )).

Let X+
OJW1K be the set of ring homomorphisms Q ∈ Spec(OJW1K)(Qp) with Q(1+W1) = ζQu

jQ for some

ζQ ∈ µp∞ and jQ ∈ Z≥0, and for any OJW1K-moduleM we letMQ denote the corresponding specialisation.
Write

T∨,−
f := T∨

f /T
∨,+
f ,

and denote by p−f : T∨
f (1−r)→ T∨,−

f (1−r) the natural projection. Let cf = ηcongf ∈ O be the congruence
number of f .

With a slight abuse, we shall refer to as a triple of ‘level-N ’ test vectors for (f̆ , ğ, h̆2) the triple obtained

by specialising level-N test vectors (f̆ , ğ, h̆) for (f , g,h).

Theorem 5.4.1. For every triple (f̆ , ğ, h̆2) of level-N test vectors for (f, g, h2) there is an injective OJW1K-
module homomorphism with pseudo-null cokernel

Logf
p,(f̆ ,ğ,h̆2)

: H1(Kp, T
∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
(N ))→ c−1

f OJW1K

such that for all Z ∈ H1(Kp, T
∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
(N )) and Q ∈ X+

OJW1K with 0 ≤ jQ < r we have

Logf
p,(f̆ ,ğ,h̆2)

(Z)Q = cQ ·
〈
exp∗p(ZQ), ηf̆ ⊗ ωğQ′ ⊗ ωh2

〉
dR
,

where cQ is an explicit nonzero constant, and Q′ ∈ Spec(OJZ1K)(Qp) is the weight 2jQ specialisation given

by Q′(1 + Z1) = ζ2Qu
2jQ−2. Moreover, we have the explicit reciprocity law

Logf
p,(f̆ ,ğ,h̆2)

(
p−f (resp(κ1(f, g, h2)))

)
(W1) = L f

p (f̆ , ğ, h̆2)(S1),
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where S1 = u2(1 + Z1)− 1 = (1 +W1)
2 − 1.

Proof. In terms of (5.5), we find that

F 3
p (V†) = T∨,+

f (1− r)⊗ ξ−1
1 ξ−1

2 ψ1−c
0 Ψ1−c

V1
= T∨,+

f (1− r)⊗ ξ−1
1 ξ−1

2 Ψ1−c
W1

.

Together with (5.9), this gives the decomposition

F bal
p (V†)/F 3

p (V†) ∼=
(
T∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
⊕

(
T∨,+
f (1− r)⊗ ξ−c

1 ξ−1
2 Ψc−1

W2

)
,

with the terms in the direct sum corresponding to Vgh2

f , Vfgh2
, and Vfh2

g from (4.6), respectively, and where

W2 = (1 + Z1)
1/2 − 1 is as in Proposition 5.2.1 (with Z2 = 0).

Thus we find that under the first isomorphism of Proposition 5.3.1, the composite map in (4.9) corre-
sponds to the projection to Selrel,str(K,T

∨
f (1− r)⊗ ξ

−1
1 ξ−1

2 Ψ1−c
W1

) (the first factor in that decomposition)
composed with the natural map

Selrel,str(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)

resp−−→ H1(Kp, T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)

p−f−−→ H1(Kp, T
∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
),

and so under the corresponding isomorphisms we have resp(κ(f, g, h2))f = p−f (resp(κ1(f, g, h2))) in

H1(Qp,Vgh2

f (N )) ∼= H1(Kp, T
∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
(N )).

Finally, the construction of Logf
p,(f̆ ,ğ,h̆2)

is deduced from a specialisation of the 3-variable p-adic regulator

map Logf
(f̆ ,ğ,h̆)

in (4.8) by the same argument as in [ACR23, Prop. 7.3], and the stated explicit reciprocity

law then follows from Theorem 4.3.2. □

5.5. On the Bloch–Kato conjecture in rank 0. In this section we deduce our first applications to the
Bloch–Kato conjecture in analytic rank zero for the twisted GK-representation

Vf,χ := V ∨
f (1− r)⊗ χ−1.

Denote by K[c] the ring class field of K of conductor c. If χ is a Hecke character of conductor cOK , then
its p-adic avatar is a locally algebraic character of Gal(K[cp∞]/K). The Galois group Γ− = Gal(K−

∞/K)
of the anticyclotomic Zp-extension of K arises as the maximal Zp-free quotient of Gal(K[cp∞]/K). Fix a
(non-canonical) splitting

(5.14) Gal(K[cp∞]/K) ≃ ∆c × Γ−,

where ∆c is the torsion subgroup of Gal(K[cp∞]/K). Then every character of ∆c can be viewed as the
p-adic avatar of a ring class character of K of conductor dividing cpsOK for sufficiently large s. If χ is as
above, we then write χ = χt · χw according to the decomposition (5.14).

Theorem 5.5.1. Let f ∈ S2r(Γ0(Nf )), with p ∤ Nf , be a p-ordinary newform of weight 2r ≥ 2, let K be
an imaginary quadratic field satisfying (spl) and (cn), and let χ be an anticyclotomic Hecke character of
conductor cOK and infinity type (−j, j), j ≥ 0. Assume that:

• N− is a square-free product of an odd number of primes;
• (pNf , cDK) = 1;
• χt has conductor prime-to-p;
• ρ̄f is absolutely irreducible and p-distinguihed;
• p > 2r − 2;
• f is not of CM-type.

Then
L(f/K, χ, r) ̸= 0 =⇒ SelBK(K,Vf,χ) = 0,

and hence the Bloch–Kato conjecture for Vf,χ holds in analytic rank zero.
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Proof. We begin by noting that for j ≥ r the sign in the functional equation of L(f/K, χ, s) is −1 (and so
L(f/K, χ, r) = 0, in which case there is nothing to show), so without loss of generality below we assume
that 0 ≤ j < r.

Write χt = α/αc with α a ray class character of K of conductor f ⊂ OK prime-to-p (as is possible by
e.g. [DR17, Lem. 6.9] or [Hid06b, Lem. 5.31] and our assumption on χt). For a prime q ̸= p split in K and
an auxiliary ring class character β of q-power conductor (both to be further specified below), we consider
the setting of §5.2 with the CM Hida families (g,h) = (θξ1(Z1),θξ2(Z2)) for the ray class characters

ξ1 := βα, ξ2 := β−1α−c.

Using ξ1ξ2 = χt and ξ1ξ
c
2 = β2, when specialised to Z2 = 0, the factorisation in Proposition 5.2.1 becomes

L f
p (f, g, h2)(S1) = ±w ·ΘBD

p (f/K, χt)(W1) ·ΘBD
p (f/K, β2)(W2) ·

ηcongf

ηf,N−
,

where S1 = u2(1+Z1)−1, W1 = u(1+Z1)
1/2−1, W2 = (1+Z1)

1/2−1, and w is a unit in OJZ1K⊗ZpQp.

By [CH18b, Thm. D] we may take q and β so that ΘBD
p (f/K, β2)(W2) is a unit in OJW2K, and with such

a choice the explicit reciprocity law of Theorem 5.4.1 can be rewritten as

Logf
p,(f̆⋆,ğ⋆,h̆⋆2)

(
p−f (resp(κ1(f, g, h2)))

)
(W1) = ±w′ ·ΘBD

p (f/K, χt)(W1)

with w′ a unit in OJW1K⊗Zp Qp and (f̆⋆, ğ⋆, h̆2) the triple of level-N test vectors from Theorem 4.1.1.

Denote by Q ∈ X+
OJW1K the specialisation W1 7→ ζQu

j − 1 (ζQ ∈ µp∞) corresponding to χw, in the sense

that

χw = Ψc−1
W1
|W1=ζQuj−1 = ψc−1

0 Ψc−1
V1
|V1=ζQuj−1−1.

Then from the above together with Theorem 5.1.1 and Theorem 5.4.1 we find

(5.15)
L(f/K, χ, r) ̸= 0 =⇒ ΘBD

p (f/K, χt)(χw(γ−)− 1) ̸= 0

=⇒ p−f (resp(κ1(f̆
⋆, ğ⋆, h̆⋆2)Q)) ̸= 0,

where κ1(f̆
⋆, ğ⋆, h̆⋆2) denotes the image of the class κ1(f, g, h2) in (5.13) under the projection

Selrel,str(K,T
∨
f (1− r)⊗ χ−1

t Ψ1−c
W1

(N ))→ Selrel,str(K,T
∨
f (1− r)⊗ χ−1

t Ψ1−c
W1

)

= Selrel,str(K,T
∨
f (1− r)⊗ χ−1

t ψ1−c
0 Ψ1−c

V1
)

associated to (f̆⋆, ğ⋆, h̆⋆2).

As noted in Remark 2.4.3, the class κ1(f̆
⋆, ğ⋆, h̆⋆2) is the bottom class of the anticyclotomic Euler system

{zf,ξ1,ξ2,ψc−1
0 ,m}m of Theorem 2.4.2 for Tf,ξ1ξ2ψc−1

0
(and the given choice of level-N test vectors). Therefore,

by construction, letting twV1,ψ
c−1
0 χ−1

w
(κ1(f̆

⋆, ğ⋆, h̆⋆2)) denote the image of κ1(f̆
⋆, ğ⋆, h̆⋆2) under the ‘twisting’

map

Selrel,str(K,T
∨
f (1− r)⊗ χ−1

t ψ1−c
0 Ψ1−c

V1
)→ Selrel,str(K,T

∨
f (1− r)⊗ χ−1Ψ1−c

V1
)

induced by the change of variables V1 7→ ζ−1
Q u1−j(1 + V1)− 1, it follows that twV1,ψ

c−1
0 χ−1

w
(κ1(f̆

⋆, ğ⋆, h̆⋆2))

is the bottom class of the twisted Euler system of Theorem 2.4.2

(5.16)
{
zf,χ,m

}
m

:=
{
zf,ξ1,ξ2,ψc−1

0 ,m ⊗ ψ
c−1
0 χ−1

w

}
m

for Tf,ξ1ξ2ψc−1
0
⊗ ψc−1

0 χ−1
w = Tf,χ.

Since the class κ1(f̆
⋆, ğ⋆, h̆⋆2)Q in (5.15) is the same as the image of the bottom class zf,χ,1 of the system

(5.16) under natural map

Selrel,str(K,T
∨
f (1− r)⊗ χ−1Ψ1−c

V1
) ∼= Selrel,str(K

−
∞, Tf,χ)→ Selrel,str(K,Tf,χ),
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from Theorem 3.3.1 we deduce that Selrel,str(K,Vf,χ) is one-dimensional, spanned by κ1(f̆
⋆, ğ⋆, h̆⋆2)Q. Since

we have in fact shown that p−f (resp(κ1(f̆
⋆, ğ⋆, h̆⋆2)Q)) ̸= 0, from the global duality exact sequence

0→ Selord,str(K,Vf,χ)→ Selrel,str(K,Vf,χ)
resp−−→ H1(Kp, Vf,χ)

H1
ord(Kp, Vf,χ)

→ Selrel,ord(K,Vf,χ)
∨ → Selrel,str(K,Vf,χ)

∨ → 0,

we deduce that Selrel,ord(K,Vf,χ) is also one-dimensional and spanned by κ1(f̆
⋆, ğ⋆, h̆⋆2)Q (hence equal to

Selrel,str(K,Vf,χ)). Finally, from another global duality exact sequence

0→ Selord,ord(K,Vf,χ)→ Selrel,ord(K,Vf,χ)
resp−−→ H1(Kp, Vf,χ)

H1
ord(Kp, Vf,χ)

→ Selord,ord(K,Vf,χ)
∨ → Selord,str(K,Vf,χ)

∨ → 0,

we deduce the vanishing of Selord,ord(K,Vf,χ); since by Lemma 3.1.2, for 0 ≤ j < r the latter group agrees
with SelBK(K,Vf,χ), this yields the result. □

5.6. On the Iwasawa main conjecture. Our next application is to a divisibility in the anticyclotomic
Iwasawa main conjecture for modular forms in the definite setting.

For any eigenform f of weight 2r ≥ 2 and an anticyclotomic Hecke character χ, put

Af,χ = HomZp(T
∨
f (1− r)⊗ χ−1, µp∞),

and writing χ = χt · χw as in Theorem 5.5.1, let ΘBD
p (f/K, χ) denote the image of the p-adic L-function

ΘBD
p (f/K, χt) of Theorem 5.1.1 attached to the ring class character χt under the twisting homomorphism

twχw : OJW1K→ OJW1K given by W1 7→ χw(γ−)(1 +W1)− 1.

Theorem 5.6.1. Let the hypotheses be as in Theorem 5.5.1, and assume in addition that f has big image.
Then Selord,ord(K

−
∞, Af,χ) is cotorsion over Λ−

K , and we have the divisibility

charΛ−
K

(
Selord,ord(K

−
∞, Af,χ)

∨) ⊃ (
ΘBD
p (f/K, χ)2

)
in Λ−

K ⊗Zp Qp.

Proof. Repeating the argument in the proof of Theorem 5.5.1, we arrive at the equality

(5.17) Logf
p,(f̆⋆,ğ⋆,h̆⋆2)

(
p−f (resp(κ1(f, g, h2)))

)
(W1) = ±w′ ·ΘBD

p (f/K, χt)(W1)

with w′ a unit in OJW1K⊗ZpQp. It follows from Vatsal’s result [Vat03, Thm. 1.1] (as extended in [CH18b,

Thm. C] and [Hun17, Thm. B] to higher weights) that the p-adic L-function ΘBD
p (f/K, χt)(W1) is nonzero.

Thus, letting

κ1(f̆
⋆, ğ⋆, h̆⋆2) ∈ Selrel,str(K,T

∨
f (1− r)⊗ χ−1

t ψ1−c
0 Ψ1−c

V1
)

be as in the proof of Theorem 5.5.1, we conclude that

κ1(f̆
⋆, ğ⋆, h̆2) is non-torsion

from (5.17).

Now, as noted in the proof of Theorem 5.5.1, the twisted class twV1,ψ
c−1
0 χ−1

w
(κ1(f̆

⋆, ğ⋆, h̆⋆2)) is the bottom

class of the Euler system {zf,χ,m}m for Tf,χ constructed in Theorem 2.4.2. Hence from Theorem 3.3.3 we
deduce that Selrel,str(K,Tf,χ) and Xstr,rel(K,Af,χ) have both Λ−

K-rank one, and we have the divisibility

(5.18) charΛ−
K

(
Xstr,rel(K,Af,χ)tors

)
⊃ charΛ−

K

(
Selrel,str(K,Tf,χ)

Λ−
K · twV1,ψ

c−1
0 χ−1

w
(κ1(f̆⋆, ğ⋆, h̆⋆2))

)2

in Λ−
K . Since from (5.17) we deduce an explicit reciprocity law relating

resp(twV1,ψ
c−1
0 χ−1

w
(κ1(f̆

⋆, ğ⋆, h̆⋆2))) = resp(twW1,χ
−1
w
(κ1(f̆

⋆, ğ⋆, h̆⋆2)))
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to twχw(Θ
BD
p (f/K, χt)) = ΘBD

p (f/K, χ), the result now follows from (5.18) and global duality by the same
argument as in [BCK21, Thm. 5.1]. □

Remark 5.6.2. An upper bound divisibility in the anticyclotomic Iwasawa main conjecture for Vf,χ as in
Theorem 5.6.1 was first obtained by Bertolini–Darmon [BD05] for finite order character χ in weight 2 and
by Chida–Hsieh [CH15] in higher weights 2 ≤ k < p−1 using Heegner cycles and level-raising congruences.
Our proof of Theorem 5.6.1 is completely different from theirs (instead, it is more in line with Kolyvagin’s
original arguments), and allows us to dispense with their ramification hypotheses on ρ̄f .

5.7. On the Bloch–Kato conjecture in rank 1. The arguments in the proof of Theorem 5.6.1 give the
following result towards the Bloch–Kato conjecture in rank 1.

Theorem 5.7.1. Let the hypotheses be as in Theorem 5.5.1. If j ≥ r (which implies L(f/K, χ, r) = 0),
then

dimLP
SelBK(K,Vf,χ) ≥ 1.

Moreover, there exists a class zf,χ ∈ SelBK(K,Vf,χ) such that

zf,χ ̸= 0 =⇒ dimLP
SelBK(K,Vf,χ) = 1.

Proof. The proof of Theorem 5.6.1 showed that the class

zf,χ := twV1,ψ
c−1
0 χ−1

w
(κ1(f̆

⋆, ğ⋆, h̆⋆2)) ∈ Selrel,str(K
−
∞, Tf,χ)

is non-torsion over Λ−
K (note that f is not required to have big image for this). On the other hand, one

readily checks that the natural map

(5.19) Selrel,str(K
−
∞, Tf,χ)/(γ− − 1)Selrel,str(K

−
∞, Tf,χ)→ Selrel,str(K,Tf,χ)

is injective. Thus we conclude that Selrel,str(K,Tf,χ) has positive O-rank, which together with Lemma 3.1.2
yields the first part of the theorem. Letting zf,χ ∈ Selrel,str(K,Tf,χ) be the image of zf,χ under (5.19), the
second claim follows from Theorem 3.3.1. □

Remark 5.7.2. From the Euler system of Beilinson–Flach elements constructed by Lei–Loeffler–Zerbes
and Kings–Loeffler–Zerbes [LLZ14, KLZ17] attached to the Rankin–Selberg convolution of f and a suitable
CM form, one can produce a class BFf,χ ∈ H1(K,Vf,χ). As shown in [LLZ15] and [BL18], this class extends
to a full Euler system for the GK-representation Vf,χ , but not for the correct local conditions at p. Indeed,
with notations as in the proof of Theorem 5.5.1, it follows from the explicit reciprocity law of [KLZ17]
that, for j ≥ r, the class BFf,χ lands in Selrel,str(K,Vf,χ) = SelBK(K,Vf,χ) precisely when

(5.20) ΘBD
p (f/K, χt)(χw(γ−)− 1) = 0

(see [Cas17, Thm. 2.4] and [BL18, Thm. 3.11] for a specialisation of the results of [KLZ17] to this case).
However, for j ≥ r the character χw is outside the range of interpolation of ΘBD

p (f/K, χt), and so the
vanishing (5.20) is not a consequence of L(f/K, χ, r) = 0. As a result, Theorem 5.7.1 seems to fall outside
the scope of methods building on these classes. (On the other hand, Heegner cycles also seem to not be
enough, since N− is assumed to have an odd number of prime factors, rending Heegner cycles not directly
accessible, and in this definite setting the level-raising techniques of Bertolini–Darmon [BD05] are only
known to yield results towards the Bloch–Kato conjecture in rank 0, see e.g. [LV10].)

6. Indefinite case

In this section we deduce our applications to the Bloch–Kato conjecture (in ranks 0 and 1) for anticy-
clotomic twists of f/K when ϵ(f/K) = −1. Since the nonvanishing results we shall need from [Hsi14] are
currently only available in the literature under the classical Heegner hypothesis, in the following we shall
restrict to this case, but we note that with the required extension of [Hsi14] at hand (see [Bur17, Mag22]
for progress in this direction), our results directly extend to the general indefinite case.
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6.1. Anticyclotomic p-adic L-functions. Keeping the setting introduced in Section 5, we assume now
that K satisfies the classical Heegner hypothesis:

(Heeg) every prime ℓ | Nf splits in K,

and fix an ideal N ⊂ OK with OK/N ≃ Z/NfZ.
Let Ωp and ΩK be the CM periods attached to K as in [CH18a, §2.5], and put

Λ−,ur
K = Λ−

K⊗̂ZpZ
ur
p ,

where Zur
p is the completion of the ring of integers of the maximal unramified extension of Qp.

Theorem 6.1.1. Let χ0 be an O-valued ring class character of K of conductor cOK with (pNf , cDK) = 1.
Then there exists a unique element L BDP

p (f/K, χ0) ∈ Zur
p JW K ⊗Zp O such that every character ϕ of Γ−

of infinity type (−j, j) with j ≥ r and conductor pn, we have

L BDP
p (f/K, χ0)

2(ϕ(γ−)− 1) =
Ω4j
p

Ω4j
K

· Γ(r + j)Γ(j + 1− r)ϕ(N−1)

4(2π)2j+1
√
DK

2j−1
· ep(f, χ0ϕ) · L(f/K, χ0ϕ, r),

where

ep(f, χ0ϕ) =

{(
1− apχ0ϕ(p̄)p

−r + χ0ϕ(p̄)
2p−1

)2
if n = 0,

ε( 12 , (χ0ϕ)p)
−2 else,

with ε( 12 , (χ0ϕ)p) the epsilon-factor in [CH18a, p. 570] attached to the component of χ0ϕ at p. Moreover,

L BDP
p (f/K, χ0) is a nonzero element of Λ−,ur

K .

Proof. This is a reformulation of results contained in [CH18a, §3]. In particular, since (Nf , DK) = 1 as a
consequence of (Heeg), the nonvanishing of L BDP

p (f/K, χ0) follows from [CH18a, Thm. 3.9]. □

Remark 6.1.2. The CM period ΩK ∈ C× in Theorem 6.1.1 agrees with that in [BDP13, (5.1.16)], but is
different from the period Ω∞ defined in [dS87, p. 66] and [HT93, (4.4b)]. In fact, one has

Ω∞ = 2πi · ΩK .

In terms of Ω∞, the interpolation formula in Theorem 6.1.1 reads

L BDP
p (f/K, χ0)

2(ϕ(γ−)− 1) =
Ω4j
p

Ω4j
∞
· Γ(r + j)Γ(j + 1− r)ϕ(N−1)

4(2π)1−2j
√
DK

2j−1
· ep(f, χ0ϕ) · L(f/K, χ0ϕ, r).

This is the form of the interpolation that we shall use later.

6.2. Factorisation of triple product p-adic L-function. As in §5.2, we consider the triple (f , g,h),
with f ∈ So(Nf , ω2r−2, I) the Hida family specialising to f at an arithmetic point Q0 ∈ X+

I of weight 2r,
and

(g,h) = (θξ1(Z1),θξ2(Z2)) ∈ OJZ1KJqK×OJZ2KJqK

the CM Hida families of §2.4.1 attached to the ray class characters ξ1, ξ2 satisfying (sd), and also (dist).
The triple product p-adic L-function of interest in this section is the g-unbalanced p-adic L-function

(6.1) L g
p (f , g,h) ∈ R = I⊗̂OOJZ1K⊗̂OOJZ2K ≃ IJZ1, Z2K

obtained from Theorem 4.1.1 with the roles of f and g reversed (note that the conditions in Theorem 4.1.1
in this setting are ensured by (dist) and our hypothesis on the conductor of ξ1). In the following we let

L g
p (f, g,h) ∈ OJZ1, Z2K

be the image of L g
p (f , g,h) under the map IJZ1, Z2K→ OJZ1, Z2K given by Q0 : I→ O.
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6.2.1. Anticyclotomic Katz p-adic L-function. Before we can state and prove the main result of this section,
we need to recall the interpolation property of the Katz p-adic L-functions [Kat78], following the exposition
in [dS87]. For any ideal c ⊂ OK coprime to p, we let Z(c) denote the ray class group of K of conductor
cp∞ (so Z(c) ≃ Gal(Kcp∞/K)).

Theorem 6.2.1. There exists an element LKatz
p,c ∈ OJZ(c)K⊗̂ZpZ

ur
p such that for every character ξ of Z(c)

that is crystalline at both p and p̄, corresponding to a Hecke character of infinity type (k, j) with k > 0 and
j ≤ 0, then ξ satisfies

LKatz
p,c (ξ) =

Ωk−jp

Ωk−j∞
· Γ(k) ·

(√
DK

2π

)j
· (1− ξ−1(p)p−1)(1− ξ(p̄)) · Lc(ξ, 0),

where Lc(ξ, s) denotes the Hecke L-function of ξ with the Euler factors at the primes dividing c removed.
Moreover, we have the functional equation

LKatz
p,c (ξ) = LKatz

p,c̄ (ξ−cN−1),

where the equality is up to a p-adic unit.

Proof. Our LKatz
p,c corresponds to the measure denoted µ(cp̄∞) in [dS87, Thm. II.4.14], and the functional

equation is given in [dS87, Thm. II.6.4] (which allows to extend the interpolation property from k > −j ≥ 0
to the entire range in the statement). □

Let Γc be the maximal torsion-free subgroup of Z(c), and fix a (non-canonical) splitting

Z(c) ≃ ∆c × Γc

with ∆c a finite group and Γc ≃ Z2
p. For c′ ⊃ c the natural projection Z(c) ↠ Z(c′) takes ∆c to ∆c′ ,

inducing an isomorphism Γc
∼−→ Γc′ . Thus in the following we shall identify Γc with Γ∞ := Γ(1), the Galois

group of the Z2
p-extension of K as introduced in §2.4.1.

Suppose η is a Hecke character of K of conductor dividing cp∞. Viewing η as a character on Z(c) ≃
∆c × ΓK , we put η̄ := η|∆c

, and denote by LKatz,−
p,η̄ the image of LKatz

p,c under the composite map

OJZ(c)K⊗̂ZpZ
ur
p → OJΓKK⊗̂ZpZ

ur
p → Λ−,ur

K ,

where the first arrow is the natural projection defined by η̄, and the second arrow is defined by γ 7→ γ1−c

for γ ∈ Γ∞. Put also η̄− := η̄c−1.

Lemma 6.2.2. Let ξ be a ray class character of K such that ξ̄− has conductor c prime-to-p. Assume that:

(i) c is only divisible by primes that are split in K;
(ii) ∆c has order prime-to-p;
(iii) ξ̄−|GKv ̸= 1 for all primes v | p in K;

(iv) ξ̄− has order at least 3.

Then the congruence ideal of the CM Hida family θξ(Z) in (2.16) is principal, generated by LKatz,−
p,ξ̄−

.

Proof. As explained in [ACR25, Prop. 4.6], this is a consequence of the proof of the anticyclotomic Iwasawa
main conjecture for Hecke characters by Hida–Tilouine [HT93, HT94] and Hida [Hid06a] (recall that here
we assume (cn), so the omitted term hK is a p-adic unit). □

6.2.2. The factorisation result. We now fix our choice of generator of the congruence ideal of g = θξ1(Z1).

Definition 6.2.3. For ξ1 satisfying the conditions of Lemma 6.2.2 (in particular, note that (iii) is equiv-
alent to (dist)), put

L g
p (f , g,h) := L

Katz,−
p,ξ̄−1

·L g
p (f̆

⋆, ğ⋆, h̆⋆),

where (f̆⋆, ğ⋆, h̆⋆) is the triple of level-N test vectors from Theorem 4.1.1 (see also Remark 4.1.2), and let
L g
p (f, g,h) denote its image under the map induced by Q0 : I→ O.
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Note that ξ1 can be replaced by a twist ξ1 · ϕ ◦N for a Dirichlet character ϕ without changing ξ̄−1 , and
thus in the following we may assume that ξ1 satisfies the following minimality hypotheses:

(6.2) the conductor of ξ1 is minimal among Dirichlet twists.

The following is an analogue of Proposition 5.2.1 in the indefinite setting. Note that a variant of this
result first appeared in the work of Darmon–Lauder–Rotger (see [DLR15, Thm. 3.9]), but the formulation
of their result is not well-suited for our Iwasawa-theoretic purposes in this paper.

Proposition 6.2.4. Assume that ξ1 satisfies the conditions in Lemma 6.2.2. Set

Si = u2(1 + Zi)− 1

for i = 1, 2, and

W1 = u−1(1 + S1)
1/2(1 + S2)

1/2 − 1, W2 = (1 + S1)
1/2(1 + S2)

−1/2 − 1.

Then

L g
p (f, g,h)(S1, S2) = ±w ·L BDP

p (f/K, ξ1ξ2)(W1) ·L BDP
p (f/K, ξ1ξ

c
2)(W2),

where w is a unit in OJZ1, Z2K⊗Zp Qp.

Proof. Let k1, k2 be integers with k1 ≡ k2 (mod 2) and k1 ≥ k2 + 2r. Set Si = uki − 1 for i = 1, 2, so the
corresponding specialisations of Wi are given by

W1 = u(k1+k2−2)/2 − 1, W2 = u(k1−k2)/2 − 1,

and denote by V†
Q the specialisation of V† at Q = (Q0, S1, S2). Putting

Ti = u−1(1 + Si)− 1 = u(1 + Zi)− 1

for the ease of notation, we have

det(T∨
f ⊗ VgT1 ⊗ VhT2 ) = ε2r−1

cyc · (ξ1ξ2ΨT1
ΨT2
◦ V ) = ε2r−1

cyc · (ΨT1
ΨT2
◦ V ),

using that the central characters of ξ1 and ξ2 are inverses of each other for the second equality, and so

(6.3)
V†
Q = T∨

f ⊗ (IndQKξ
−1
1 ΨT1

)⊗ (IndQKξ
−1
2 ΨT2

)⊗ ε1−rcyc (Ψ
−1/2
T1

Ψ
−1/2
T2

◦ V )

≃
(
T∨
f (1− r)⊗ IndQKξ

−1
1 ξ−1

2 Ψ1−c
W1

)
⊕

(
T∨
f (1− r)⊗ IndQKξ

−1
1 ξ−c

2 Ψ1−c
W2

)
.

Thus we find that the completed L-value appearing in the interpolation formula of Theorem 4.1.1 is given
by

(6.4)
ΓV†

Q
(0) · L(V†

Q, 0) =
Γ
(
k1+k2

2 + r − 1
)
Γ
(
k1−k2

2 − r + 1
)
Γ
(
k1+k2

2 − r
)
Γ
(
k1−k2

2 + r
)

24 · (2π)2k1

× L(f/K, ξ1ξ2Ψc−1
W1

, r) · L(f/K, ξ1ξc2Ψc−1
W2

, r),

and similarly the modified Euler factor decomposes as

(6.5)
Ep(F g

p (V
†
Q)) =

(
1− ap(ξ1ξ2Ψc−1

W1
)(p̄)p−r + (ξ1ξ2Ψ

c−1
W2

)(p̄)2p−1
)2

×
(
1− ap(ξ1ξc2Ψc−1

W2
)(p̄)p−r + (ξ1ξ

c
2Ψ

c−1
W2

)(p̄)2p−1
)2
.

Moreover, letting χ′
g be the prime-to-p part of the nebentypus character of gT1

, we have(
1−

χ′
g(p)p

k1−1

ξ1Ψ
−1
T1

(p̄)2

)(
1−

χ′
g(p)p

k1−2

ξ1Ψ
−1
T1

(p̄)2

)
=

(
1− ξc−1

1 Ψ1−c
T1

(p̄)
)(
1− ξc−1

1 Ψ1−c
T1

(p̄)p−1
)
,

and therefore the canonical period ΩgT1
in Theorem 4.1.1 (associated with the generator η⋆g = LKatz,−

p,ξ̄−1
of

C(g) from Lemma 6.2.2) is given by

(6.6) ΩgT1
= (−2

√
−1)k1+1 ·

∥g◦
T1
∥2Γ0(C)

η⋆gT1
·
(
1− ξc−1

1 Ψ1−c
T1

(p̄)
)(
1− ξc−1

1 Ψ1−c
T1

(p̄)p−1
)
,
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where C = NK/Q(f1)DK , and we note that we may ignore the term
∏
q∈Σexc

(1+q−1)2 from Theorem 4.1.1,

since (up to a p-adic unit) it only contributes a fixed power of p (in particular, independent of k1, k2).
On the other hand, since gT1

has weight k1, from Hida’s formula for the adjoint L-value [HT93, Thm. 7.1]
(using that ξ1 satisfies the minimality condition (6.2)) and Dirichlet’s class number formula we obtain

∥g◦
T1
∥2Γ0(C) = Γ(k1) ·

D2
K

22k1πk1+1
· 2πhK

wK
√
DK

· L(ξc−1
1 Ψ1−c

T1
, 1),

where wK = |O×
K |.

Note that L(ξc−1
1 Ψ1−c

T1
, 1) = L(ξc−1

1 Ψ1−c
T1

N−1, 0), and ξc−1
1 Ψ1−c

T1
N−1 has infinity type (k1, 2−k1). Hence

for k1 ≥ 2 this character lies in the range of interpolation of LKatz
p,f , where f denotes the conductor of ξ1−c

1 ,

and from the right above formula for L(ξc−1
1 Ψ1−c

T1
, 1) and Theorem 6.2.1 we obtain

(6.7)
LKatz
p,f (ξc−1

1 Ψ1−c
T1

N−1) =

(
Ωp
Ω∞

)2k1−2

· π
2k1−2 · 23k1−3

√
DK

k1+1

×
(
1− ξc−1

1 Ψ1−c
T1

(p̄)
)(
1− ξc−1

1 Ψ1−c
T1

(p̄)p−1
)
· ∥g◦

T1
∥2Γ0(C) ·

wK
hK

.

Moreover, by the functional equation of Theorem 6.2.1 and the definition of η⋆g we have the relation

(6.8)
hK
wK
· LKatz

p,f (ξc−1
1 Ψ1−c

T1
N−1) ∼p η⋆gT1 ,

where ∼p denotes equality up to a p-adic unit. Therefore, equations (6.7) and (6.8) imply that

(6.9)
∥g◦
T1
∥2Γ0(C)

η⋆gT1
·
(
1− ξc−1

1 Ψ1−c
T1

(p̄)
)(
1− ξc−1

1 Ψ1−c
T1

(p̄)p−1
)
∼p

(
Ω∞

Ωp

)2k1−2

·
√
DK

k1+1

(2π)2k1−2

Hence, from (6.6) and (6.9) we arrive at

(6.10)
1

ΩgT1

∼p
(

Ωp
Ω∞

)2k1−2

· (2π)2k1−2

√
−DK

k1+1
.

Finally, note that the characters ξ1ξ2Ψ
c−1
W1

and ξ1ξ
c
2Ψ

c−1
W2

in the right-hand side of (6.4) are both anticy-
clotomic, and of infinity type (−(k1+k2−2)/2, (k1+k2−2)/2) and (−(k1−k2)/2, (k1−k2)/2), respectively,
and so for k1 ≥ k2+2r they are in the range of interpolation for L BDP

p (f/K, ξ1ξ2) and L BDP
p (f/K, ξ1ξ

c
2),

respectively. Thus substituting (6.4), (6.5), and (6.10) into the interpolation formula for L g
p (f, g,h) in

Theorem 4.1.1 and comparing with Theorem 6.1.1 we finally arrive at

L g
p (f, g,h)

2(S1, S2) ∼p
−1

Dk1+1
K

·L BDP
p (f/K, ξ1ξ2)

2(W1) ·L BDP
p (f/K, ξ1ξ

c
2)

2(W2),

and this yields the proof of the result. □

6.3. Selmer group decomposition.

Proposition 6.3.1. Under the direct sum decomposition

H1(Q,V†
Q0

) ≃ H1(K,T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕H1(K,T∨

f (1− r)⊗ ξ−1
1 ξ−c

2 Ψ1−c
W2

)

of (5.8), the balanced Selmer group Selbal(Q,V†
Q0

) decomposes as

Selbal(Q,V†
Q0

) ≃ Selrel,str(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕ Selord,ord(K,T

∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
);

and the g-unbalanced Selmer group Selg(Q,V†
Q0

) decomposes as

Selg(Q,V†
Q0

) ≃ Selrel,str(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1
)⊕ Selrel,str(K,T

∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
).
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Proof. The result for Selbal(Q,V†
Q0

) is given in Proposition 5.3.1, so we focus on Selg(Q,V†
Q0

). Put

Ṽ†
Q0

=
(
T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕

(
T∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
,

so by Shapiro’s lemma we have

H1(Q,V†
Q0

) ≃ H1(K, Ṽ†
Q0

).

Putting Ti = u(1 + Zi)− 1 as in the proof of Proposition 6.2.4, so (5.4) can be rewritten as

Vg ∼= IndQK(ξ−1
1 ΨT1

), Vh ∼= IndQK(ξ−1
2 ΨT2

),

a direct computation shows that the g-unbalanced local condition is given by

F g
p (V

†
Q0

) = T∨
f ⊗ ξ−1

1 ΨT1
⊗

(
ξ−1
2 ΨT2

⊕ ξ−c
2 Ψc

T2

)
⊗ ε1−rcyc (Ψ

−1/2
T1

Ψ
−1/2
T2

◦ V )

=
(
T∨
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕

(
T∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
.

Therefore, we have

Fp(Ṽ
†
Q0

) = Ṽ†
Q0
, Fp̄(Ṽ

†
Q0

) = 0,

and this yields the stated decomposition for Selg(Q,V†
Q0

). □

Corollary 6.3.2. The balanced Selmer group Selbal(Q,A†
Q0

) decomposes as

Selbal(Q,A†
Q0

) ≃ Selstr,rel(K,Af (r)⊗ ξ1ξ2Ψc−1
W1

)⊕ Selord,ord(K,Af (r)⊗ ξ1ξc2Ψc−1
W2

);

and the g-unbalanced Selmer group Selg(Q,A†
Q0

) decomposes as

Selg(Q,A†
Q0

) ≃ Selstr,rel(K,Af (r)⊗ ξ1ξ2Ψc−1
W1

)⊕ Selstr,rel(K,Af (r)⊗ ξ1ξc2Ψc−1
W2

).

Proof. As in Corollary 5.3.2, this is immediate from Proposition 6.3.1 and local Tate duality. □

6.4. Explicit reciprocity law. As in §5.4, we put

V† = V†
Q0
⊗OJZ1,Z2K OJZ1, Z2K/(Z2),

let h2 be specialisation of h = θξ2(Z2) of weight 2 given by Z2 = 0, but now consider the second component
κ2(f, g, h2) of the specialised big diagonal class

κ(f, g, h2) = (κ1(f, g, h2), κ2(f, g, h2))

according to the decomposition of Selbal(Q,V†(N )) from Proposition 6.3.1; in particular, we have

(6.11) κ2(f, g, h2) ∈ Selord,ord(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
(N )),

where W2 = (1 + Z1)
1/2 − 1.

Let X+
OJW2K be the set of ring homomorphisms Q ∈ Spec(OJW2K)(Qp) with Q(1+W2) = ζQu

jQ for some

ζQ ∈ µp∞ and jQ ∈ Z≥0, and for any OJW2K-moduleM we letMQ denote the corresponding specialisation.

Theorem 6.4.1. For every triple (f̆ , ğ, h̆2) of level-N test vectors for (f, g, h2) there is an injective OJW2K-
module homomorphism with pseudo-null cokernel

Logg
p̄,(f̆ ,ğ,h̆2)

: H1(Kp̄, T
∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
(N ))→ C(g)−1OJW2K

such that for any Z ∈ H1(Kp̄, T
∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
(N )) and Q ∈ X+

OJW2K of weight jQ ≥ r we have

Logg
p̄,(f̆ ,ğ,h̆2)

(Z)Q = cQ ·
〈
exp∗p(ZQ), ωf̆ ⊗ ηğQ′ ⊗ ωh̆2

〉
dR
,

where cQ is an explicit nonzero constant, and Q′ ∈ Spec(OJZ1K)(Qp) is given by Q′(1 + Z1) = ζ2Qu
2jQ .

Moreover, we have the explicit reciprocity law

Logg
p̄,(f̆ ,ğ,h̆2)

(
resp̄(κ2(f, g, h2))

)
(W2) = L g

p (f̆ , ğ, h̆2)(S1),

where S1 = u2(1 + Z1)− 1 = u2(1 +W2)
2 − 1.
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Proof. As shown in the proof of Theorem 5.4.1, we have

F bal
p (V†)/F 3

p (V†) ∼=
(
T∨,−
f (1− r)⊗ ξ−1

1 ξ−1
2 Ψ1−c

W1

)
⊕
(
T∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2

)
⊕

(
T∨,+
f (1− r)⊗ ξ−c

1 ξ−1
2 Ψc−1

W2

)
,

with the direct summands corresponding to Vgh2

f , Vfgh2
, and Vfh2

g from (4.6), respectively. As a result, the

analogue of the composite map (4.9) in the present g-unbalanced case:

(6.12)
Selbal(Q,V†(N ))

resp−−→ H1(Qp,F
bal
p (V†(N )))→ H1(Qp,F

bal
p (V†(N ))/F 3

p (V†(N )))

→ H1(Qp,Vfh2
g (N ))

corresponds, under the isomorphism of Proposition 6.3.1, to the projection onto Selord,ord(K,T
∨
f (1− r)⊗

ξ−1
1 ξ−c

2 Ψ1−c
W2

(N )) (the second factor in that decomposition) composed with the restriction map

Selord,ord(K,T
∨
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
(N ))

resp̄−−→ H1(Kp̄, T
∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
(N )).

In particular, under the corresponding identifications the image resp(κ(f, g, h2))g of κ(f, g, h2) under (6.12)
is such that

resp(κ(f, g, h2))g = resp̄(κ2(f, g, h2))

in

H1(Qp, V
fh2
g (N )) ≃ H1(Kp̄, T

∨,+
f (1− r)⊗ ξ−1

1 ξ−c
2 Ψ1−c

W2
(N )).

On the other hand, the construction of Logg
p̄,(f̆ ,ğ,h̆2)

is deduced from a specialisation of the 3-variable p-

adic regulator map Logg
(f̆ ,ğ,h̆)

in §4.3 by the same argument as in [ACR23, Prop. 7.3]), and the associated

explicit reciprocity law then follows from Theorem 4.3.2. □

In particular, for the choice of level-N test vectors from Theorem 4.1.1 we deduce the following.

Corollary 6.4.2. Assume that ξ1 satisfies the conditions in Lemma 6.2.2, and put

S1 = u2(1 + Z1)− 1, W1 = u(1 + Z1)
1/2 − 1, W2 = (1 + Z1)

1/2 − 1.

Then

LKatz,−
p,ξ̄−1

· Logg
p̄,(f̆⋆,ğ⋆,h̆⋆2)

(
resp̄(κ2(f, g, h2))

)
(W2) = L g

p (f, g, h2)(S1)

= ±w ·L BDP
p (f/K, ξ1ξ2)(W1) ·L BDP

p (f/K, ξ1ξ
c
2)(W2),

where L g
p (f, g, h2) is the specialisation of L g

p (f , g,h) in Definition 6.2.3 and w is a unit in OJZ1K⊗ZpQp.

Proof. The first equality is immediate from Lemma 6.2.2 and Theorem 6.4.1, and the second follows from
Proposition 6.2.4. □

6.5. On the Bloch–Kato conjecture in rank 0. As another application of the Euler system construc-
tion in this paper, we now deduce a result towards the Bloch–Kato conjecture for

Vf,χ = V ∨
f (1− r)⊗ χ−1

analogous to Theorem 5.5.1 but in the indefinite setting.

Theorem 6.5.1. Let f ∈ S2r(Γ0(Nf )), with p ∤ Nf , be a p-ordinary newform of weight 2r ≥ 2, let K be
an imaginary quadratic field satisfying (spl) and (cn), and let χ be an anticyclotomic Hecke character of
conductor cOK and infinity type (−j, j), j ≥ 0. Assume that:

• every prime ℓ | Nf splits in K;
• (pNf , cDK) = 1;
• χt has conductor prime-to-p;
• ρ̄f is absolutely irreducible;
• f is not of CM-type.
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Then

L(f/K, χ, r) ̸= 0 =⇒ SelBK(K,Vf,χ) = 0,

and hence the Bloch–Kato conjecture for Vf,χ holds in analytic rank zero.

Proof. We argue similarly as in the proof of Theorem 5.5.1, with some modifications. By our assumption
on Nf , the sign in the functional equation of L(f/K, χ, s) is −1 for 0 ≤ j < r, so without loss of generality
we assume that j ≥ r.

Write χt = α/αc for a ray class character α as in the proof of Theorem 5.5.1, but now put

(6.13) ξ1 := βα, ξ2 := (β−1α−c)c = βα−1,

with β an auxiliary ring class character of K of q-power conductor for a suitable prime q ̸= p split in K.
Consider the setting of §6.2 with the CM Hida families

(g,h) = (θξ1(Z1),θξ2(Z2)).

By [CH18b, Thm. C] we may take q and β so that L BDP
p (f/K, β2)(W1) is a unit in Zur

p JW1K⊗ZpO and ξ1
satisfies the hypotheses of Lemma 6.2.2. With such a choice, using the equalities ξ1ξ2 = β2 and ξ1ξ

c
2 = χt

the explicit reciprocity law of Corollary 6.4.2 becomes

(6.14) LKatz,−
p,χ̄−

1

· Logg
p̄,(f̆⋆,ğ⋆,h̆⋆2)

(
resp̄(κ2(f, g, h2))

)
(W2) = ±w′ ·L BDP

p (f/K, χt)(W2),

where W2 = (1 + Z1)
1/2 − 1 = V1, with w′ is a unit in Zur

p JW2K⊗Zp LP.

Denoting by Q ∈ X+
OJW2K the specialisation W2 7→ ζQu

j − 1 (ζQ ∈ µp∞) such that

χw = Ψc−1
W2
|W2=ζQuj−1,

from (6.14), Theorem 6.1.1, and Theorem 6.4.1 we find

(6.15)
L(f/K, χ, r) ̸= 0 =⇒ L BDP

p (f/K, χt)(χw(γ−)− 1) ̸= 0

=⇒ resp̄(κ2(f̆
⋆, ğ⋆, h̆⋆2)Q) ̸= 0,

where κ2(f̆
⋆, ğ⋆, h̆⋆2) denotes the image of the class κ2(f, g, h2) in (6.11) under the projection

Selord,ord(K,T
∨
f (1− r)⊗ χ−1

t Ψ1−c
W2

(N ))→ Selord,ord(K,T
∨
f (1− r)⊗ χ−1

t Ψ1−c
W2

)

associated to (f̆⋆, ğ⋆, h̆⋆2).

As noted in Remark 2.4.3, the class κ2(f̆
⋆, ğ⋆, h̆⋆2) is the bottom class of the anticyclotomic Euler system

{czf,ξ1,ξ2,m}m of Theorem 2.4.2 for Tf,ξ1ξc2 = Tf,χt (and the given choice of test vectors). Therefore, letting

twχ−1
w
(κ2(f̆

⋆, ğ⋆, h̆⋆2)) denote the image of κ2(f̆
⋆, ğ⋆, h̆⋆2) under the ‘twisting’ map

Selord,ord(K,T
∨
f (1− r)⊗ χ−1

t Ψ1−c
W2

)→ Selord,ord(K,T
∨
f (1− r)⊗ χ−1Ψ1−c

W2
)

given by the change of variables W2 7→ ζ−1
Q u−j(1 +W2) − 1, it follows that twχ−1

w
(κ2(f̆

⋆, ğ⋆, h̆⋆2)) is the
bottom class of the Euler system

(6.16)
{
czf,χ,m

}
m

:=
{
czf,ξ1,ξ2,,m ⊗ χ−1

w

}
m

of Theorem 2.4.2 for Tf,ξ1ξc2 ⊗ χ
−1
w = Tf,χ.

Since by construction the class κ2(f̆
⋆, ğ⋆, h̆⋆2)Q in (6.15) agrees with the image of the bottom class czf,χ,1

of the system (6.16) under natural map

Selord,ord(K,T
∨
f (1− r)⊗ χ−1Ψ1−c

W2
) ∼= Selord,ord(K

−
∞, Tf,χ)→ Selord,ord(K,Tf,χ),

from Theorem 3.3.1 we deduce that Selord,ord(K,Vf,χ) is one-dimensional, spanned by κ2(f̆
⋆, ğ⋆, h̆⋆2)Q.

Since we have in fact shown that resp̄(κ2(f̆
⋆, ğ⋆, h̆⋆2)Q) ̸= 0, the vanishing of Selrel,str(K,Vf,χ) then follows

by global duality similarly as in the proof of Theorem 5.5.1; and since by Lemma 3.1.2, for j ≥ r the latter
group agrees with SelBK(K,Vf,χ), this yields the result. □
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6.6. On the Iwasawa main conjecture. Writing any anticyclotomic Hecke character χ of K as χ = χt ·
χw as in §5.5, we let L BDP

p (f/K, χ) denote the image of L BDP
p (f/K, χt) under the twisting homomorphism

twχw : Zur
p JW2K⊗Zp O → Zur

p JW2K⊗Zp O given by W2 7→ χw(γ−)(1 +W2)− 1.

Our next application is to the Iwasawa–Greenberg main conjecture for L BDP
p (f/K, χ).

Theorem 6.6.1. Let the hypotheses be an in Theorem 6.5.1, and assume in addition that f has big image.
Then Selstr,rel(K,Af,χ) is cotorsion over Λ−

K , and we have the divisibility

charΛ−
K

(
Selstr,rel(K,Af,χ)

∨) ⊃ (
L BDP

p (f/K, χ)2
)

in Λ−,ur
K ⊗Zp Qp.

Proof. Repeating the argument in the proof of Theorem 5.5.1, we arrive at the equality

(6.17) LKatz,−
p,ξ̄−1

· Logg
p̄,(f̆⋆,ğ⋆,h̆⋆2)

(
resp̄(κ2(f, g, h2))

)
(W2) = ±w′ ·L BDP

p (f/K, χt)(W2),

with w′ is a unit in Zur
p JW2K⊗Zp LP. Since L BDP

p (f/K, χt)(W2) is nonzero by Theorem 6.1.1, letting

κ2(f̆
⋆, ğ⋆, h̆⋆2) ∈ Selord,ord(K,T

∨
f (1− r)⊗ χ−1

t Ψ1−c
W2

)

be as in the proof of Theorem 6.5.1, from (6.17) we conclude that κ2(f̆
⋆, ğ⋆, h̆2) is non-torsion.

Since twχ−1
w
(κ2(f̆

⋆, ğ⋆, h̆⋆2)) is the bottom class of the Euler system {czf,χ,m}m for Tf,χ constructed in

Theorem 2.4.2, from Theorem 3.3.3 we deduce that Selord,ord(K,Tf,χ) and Xord,ord(K,Af,χ) have both
Λ−
K-rank one, and we have the divisibility

(6.18) charΛ−
K

(
Xord,ord(K,Af,χ)tors

)
⊃ charΛ−

K

(
Selord,ord(K,Tf,χ)

Λ−
K · twχ−1

w
(κ2(f̆⋆, ğ⋆, h̆⋆2))

)2

in Λ−
K . Since from (6.17) we deduce an explicit reciprocity law relating

resp̄(twχ−1
w
(κ2(f̆

⋆, ğ⋆, h̆⋆2)))

to twχw(L
BDP
p (f/K, χt)) = L BDP

p (f/K, χ), the result now follows from (6.18) and global duality by the
same argument as in [BCK21, Thm. 5.1]. □

Remark 6.6.2. Note that Theorem 6.6.1 also yields a proof of a divisibility towards the Perrin-Riou main
conjecture for generalised Heegner cycles formulated in [LV19] (see [BCK21, Thm. 5.2] for the argument),
removing some of the hypotheses in the main result of [LV19].

6.7. On the Bloch–Kato conjecture in rank 1. We can also give an analogue of Theorem 5.7.1 in the
indefinite case.

Theorem 6.7.1. Let the hypotheses be as in Theorem 6.5.1. If 0 ≤ j < r (which implies L(f/K, χ, r) = 0),
then

dimLP
SelBK(K,Vf,χ) ≥ 1.

Moreover, there exists a class czf,χ ∈ SelBK(K,Vf,χ) such that

czf,χ ̸= 0 =⇒ dimLP
SelBK(K,Vf,χ) = 1.

Proof. The proof of Theorem 6.6.1 showed that the class

czf,χ := twχ−1
w
(κ2(f̆

⋆, ğ⋆, h̆⋆2)) ∈ Selord,ord(K
−
∞, Tf,χ)

is non-torsion over Λ−
K . On the other hand, one readily checks that the natural map

(6.19) Selord,ord(K
−
∞, Tf,χ)/(γ− − 1)Selord,ord(K

−
∞, Tf,χ)→ Selord,ord(K,Tf,χ)

is injective. Thus we conclude that Selord,ord(K,Tf,χ) has positiveO-rank, which together with Lemma 3.1.2
yields the first part of the theorem. Letting czf,χ ∈ Selord,ord(K,Tf,χ) be the image of czf,χ under (6.19),
the last claim follows from Theorem 3.3.1. □
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Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400.
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[Nek92] Jan Nekovář, Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math. 107 (1992), no. 1,

99–125.

[Nek00] , p-adic Abel-Jacobi maps and p-adic heights, The arithmetic and geometry of algebraic cycles (Banff, AB,
1998), CRM Proc. Lecture Notes, vol. 24, Amer. Math. Soc., Providence, RI, 2000, pp. 367–379.

[Nek07] , The Euler system method for CM points on Shimura curves, L-functions and Galois representations,

London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 471–547.
[Rib77] Kenneth Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable,

V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), 1977, pp. 17–51. Lecture Notes in Math., Vol. 601.

[Rib85] Kenneth A. Ribet, On ℓ-adic representations attached to modular forms. II, Glasgow Math. J. 27 (1985), 185–194.
[Rub00] Karl Rubin, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press, Princeton, NJ,

2000, Hermann Weyl Lectures. The Institute for Advanced Study.
[Shi94] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical

Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kanô
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