DIAGONAL CYCLES AND ANTICYCLOTOMIC IWASAWA THEORY OF
MODULAR FORMS

FRANCESC CASTELLA AND KIM TUAN DO

ABSTRACT. We construct a new anticyclotomic Euler system (in the sense of Jetchev—Nekovai—Skinner)
for the Galois representation V¢ , attached to a newform f of weight 2r > 2 twisted by an anticyclotomic
Hecke character x. We then show some arithmetic applications of the constructed Euler system, including
new results on the Bloch—Kato conjecture in ranks zero and one, and a divisibility towards the Iwasawa—
Greenberg main conjecture for Vy ..

In particular, in the case where the base-change of f to our imaginary quadratic field has root number
+1 and x has higher weight (which implies that the complex L-function L(Vy y,s) vanishes at the center),
our results show that the Bloch-Kato Selmer group of V; , is nonzero, and if a certain distinguished class
K, is nonzero, then the Selmer group is one-dimensional. Such applications to the Bloch-Kato conjecture
for Vy , were left wide open by the earlier approaches using Heegner cycles and/or Beilinson-Flach classes.
Our construction is based instead on a generalisation of the Gross—Kudla—Schoen diagonal cycles.
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INTRODUCTION

Let f =3 7", ang" € S2,(o(Ny)) be an elliptic newform of even weight 2r > 2, and let pt 6N; be a
prime. Let K be an imaginary quadratic field in which p splits. Let L be a number field containing K and
the Fourier coefficients of f, and let I8 be a prime of L above p at which f is ordinary, i.e. vg(a,) = 0.
Let x be an anticyclotomic Hecke character of K, and consider the conjugate self-dual Gx = Gal(Q/K)-
representation

Vix = va(l —rex ",
where va is the contragredient of Deligne’s B-adic Galois representation associated to f.

We prove the following applications to the Bloch-Kato conjecture for V¢, . Under mild hypotheses on
f and x, the nonvanishing of the Rankin-Selberg L-function L(f/K,,s) at the center s = r implies that
the associated Bloch—Kato Selmer group is 0; and when this central L-value vanishes, the nonvanishing of
a distinguished class xy, implies that the dimension of the associated Bloch-Kato Selmer group is 1. In
addition, we also prove a divisibility in the Iwasawa main conjecture for Vy ,, both in the definite and in
the indefinite settings. These results are deduced as applications of the main contribution of this paper,
which is the construction of a new anticyclotomic Euler system for V¢ . By exploiting the decomposition
of certain triple products, our construction is based on a generalisation of the diagonal cycles introduced
by Gross—Kudla [GK92] and Gross—Schoen [GS95], and studied more recently by Darmon-Rotger and
Bertolini-Seveso—Venerucci (see [BDR22]).

0.1. Main results. Fix once and for all complex and p-adic embeddings i, : Q < C and ip Q — ép.
Assume that the discriminant Dy of K satisfies (D, Nf) = 1, and writing Ny = NT N~ with N* (resp.
N7) divisible only by primes that are split (resp. inert) in K, assume that

(sq) N~ is squarefree.

Let I'™ be the Galois group of the anticyclotomic Z,-extension of K. We consider anticyclotomic Hecke
characters of K of the form y = xo¢, with x¢ a ring character such that

(cond) Xo has conductor cOx with (¢,pNy) =1,

and ¢ an anticyclotomic Hecke character of K whose p-adic avatar (still denoted ¢) factors through I'".
Denote by v(N ) the number of prime factors of N~. Under hypotheses (sq) and (cond), the sign €(f, x)
in the functional equation for L(f/K, x, s) (relating its values at s and 2r — s) depends only on the global
root number of the base-change of f to K, given by

e(f/K) = (~1)"N
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and the infinity type, say (—7j,7) with j € Z, of x. Because L(f/K,x,s) = L(f/K, x°,s), where x¢ is the
composition of x with the action of complex conjugation, without loss of generality we may assume j > 0.
Accordingly, the values of €(f, x) are as in the following table.
e(f/K)=—1]e(f/K)=+1
0<j<k/2 -1 +1
Jj>k/2 +1 -1

0.1.1. The Euler system. Assume that f and K satisfy the following hypotheses:
(ord) f is ordinary at ‘33,

(spl) p = pp splits in K,
with B | p the primes of L/K above p induced by i,, and that
(cn) p 1 hi, where hi is the class number of K.

For every positive integer n, let K[n] denote the maximal p-subextension of the ring class field of K of
conductor n. Denote by £ the set of rational primes ¢ # p split in K. For each ¢ € L, we fix a prime [ of K
lying above it, and let N be the set of squarefree products of primes ¢ € £ coprime to pNyc (with 1 € N
by convention, corresponding to the empty product). Let O be the ring of integers in the completion Leg.

Theorem A (Theorem 2.4.2). Assume (cond), (ord), (spl), and (cn). There exists a family of cohomology
classes

{zfxm.s € H'(K[mp®], Ty ) | m e N, s > 0},
where T, is a certain G -stable O-lattice inside V., such that

K[mp*+1) _
Normye( 7., (2f,x,m,s41) = Zf,x,m,s

for all s >0, and for every m € N and £ € L with mf € N, we have the tame norm relation
K[mtp®]
NormK[mpf,]

where P(X) = det(1 — Frob X | V}/ (1)), and Froby is a geometric Frobenius.

(Zf,xymé,s) = P(Froby) Zf,xm,s)

The collection of classes of Theorem A defines an anticyclotomic Fuler system in the sense of Jetchev—
Nekovar—Skinner [JNS] for the conjugate self-dual representation V7 .. Significantly extending Kolyvagin’s
methods, the general theory developed in op. cit. provides a machinery that bounds Selmer groups attached
to conjugate self-dual representations V' from the input of a non-trivial anticyclotomic Euler system. The
Selmer group being bounded depends on the local conditions at the primes w | p satisfied by the Euler
system classes, and in this paper we produce in fact two different anticyclotomic Euler systems for Vy .,
differing in their local conditions at the primes above p.

To describe this further, recall that by p-ordinarity of f, the Galois representation va restricted to a
decomposition group Gq, C Gq fits into a short exact sequence

0=V =V -V =0,

with each va’i 1-dimensional over Ly, and with the Gq,-action on VfVﬁ given by the unramified character

sending an arithmetic Frobenius Frob,, L to ayp, the unit root of z% — a,x + pF~1. Put
VE =V A -k2)@x

In terms of this, the construction in Theorem 2.4.2 yields in fact:
ord,ord

e An anticyclotomic Euler system {Zf,x,m,s

}m,s with local conditions at the primes w | p given by

Hewq (K [mp®, Vix) = ker(Hl(K[mps]w, Vix) = HY (K [mp®lu, VfTXD'
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e An anticyclotomic Euler system {z}cisgs}mg with local conditions at the primes w | p given by
HY (K[mp*lw, Vi) ifw]p,
0 if w|p.

Depending on the infinity type of x, we show that one of these classes always lands in the Bloch—-Kato
Selmer group Selgk (K [mp®], V¢, ), namely the class

rel,str oo

>
_ JErams HizT
Kfxm,s =

;f;j;gji ifo<j<r.

0.1.2. Applications to the Bloch-Kato conjecture in rank 1. Let ry denote the residue field of Ly, and let
ps: Gq = Gla(rgp)

be the residual representation associated to f. By p-ordinarity, the restriction p f|GQp is reducible, and we

say that py is p-distinguished when the semi-simplification of p f|GQp is non-scalar. Put

Kfx = Kfx1,0 € Selgk (K, Vi ),

using that K[1] = K as a consequence of (cn). From the general results of [JNS] applied to the construction
of Theorem A we deduce in particular the following result.

Theorem B (Theorem 5.7.1). Under the hypotheses of Theorem A, assume in addition that
e (sq) holds;
o pr is absolutely irreducible and p-distinguished;
e p>2r—2;
o f is not of CM-type.
Assume also that
e(f/K)y=41 and j>r,
which implies L(f/K,x,r) =0. Then
dime SelBK(K7 Vf’X) Z 1.
Moreover, if the class k¢ is nonzero, then
Selpk (K, Vi) = L - fipx-

By the Gross—Zagier formula for the modified diagonal cycles introduced in [GK92, GS95] (a special case
of the arithmetic Gan—Gross—Prasad conjecture for SO(3) x SO(4)) proved by Yuan—Zhang-Zhang [YZZ]
in certain cases, the non-triviality of ky , is expected to be governed by the nonvanishing of L'(f/K, x, ),
and hence Theorem B yields evidence towards the Bloch-Kato conjecture for V¢, in analytic rank 1.

Our methods also yield an analogue of Theorem B in the “indefinite case” e(f/K)=—-1land 0<j<r
(see Theorem 6.7.1), but we note that in this case such result can also be obtained from the Euler system
of (generalised) Heegner cycles [Nek92, CH18a).

0.1.3. Applications to the Bloch—Kato conjecture in rank 0. We now turn our attention to the cases where
e(f,x) = +1, so the central value L(f/K,x,r) is expected to be generically nonzero. Put
ord,ord e
’ ) Frxomr itj=>r, P ——
XOMLT T . . x T Mx, 1,0
foomr T et ipo<j e, T X
Building on the explicit reciprocity law for diagonal cycles by Bertolini-Seveso—Venerucci [BSV22], we
show the equivalence
K'/fo GSGIBK(K’VJC’X) — L(f/K,X,’I“):O
Hence when L(f/K, x,r) # 0, the classes H}_’X provide non-trivial annihilators of classes in Selgk (K, Vy,y)
via global duality. Together with the general results of [JNS] applied to the construction of Theorem A
extending K},x’ this leads in particular to the following cases of the Bloch-Kato conjecture for Vy .
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Theorem C (Theorem 5.5.1). Under the hypotheses of Theorem A, assume in addition that
(sq) holds;

pr s absolutely irreducible and p-distinguished,

p>2r—2;

f is not of CM-type.

Assume also that

e(f/K)=4+1 and 0<j<m,
which implies €(f,x) = +1. Then
L(f/K,X,’I“)#O - SelBK(K7Vf7X):0?
and hence the Bloch-Kato conjecture holds in this case.

We also obtain an analogue of Theorem C for e(f/K) = —1 and j > r (see Theorem 6.5.1), but in these
cases the result was previously known using generalised Heegner cycles [CH18a]. Finally, we note that our
results also include the proof of a divisibility in the anticyclotomic Iwasawa main conjecture for V¢ ., both
in the definite and in the indefinite settings, giving in particular a new proof of the main result of [BD05]
(see Theorem 5.6.1) dispensing with their “level-raising” ramification hypotheses.

0.2. Relation to previous works. Starting with the landmark results by Gross—Zagier and Kolyvagin
[GZ86, Kol88] (see also [BDI0]), and followed by their vast generalisations by Zhang [Zha97], Tian [Tia03],
Nekovér [Nek07], Yuan—Zhang—Zhang [YZZ13] and others, the Euler system of Heegner points and Heegner
cycles has been a key ingredient in the study of the arithmetic of V;, under the Heegner hypothesis

e(f/K)=—-1.
Classical Heegner cycles account for the cases where the anticyclotomic character y has finite order (i.e.,

j = 0), but using their new variant by Bertolini-Darmon—Prasanna [BDP13], one obtains classes controlling
the arithmetic of Selgk (K, V¥,y) in the following cases:

(1%% quadrant) e(f/K)=-1, 0<j<r

In another major advance, Bertolini-Darmon [BD05] exploited congruences between modular forms on
different quaternion algebras and the Cerednik—Drinfeld theory of interchange of invariants to realise the
Galois representation (on finite quotients of) T, in the torsion of the Jacobian of certain Shimura curves.
This allowed them to still use the Heegner point construction in situations where e(f/K) = +1. Together
with the extension to higher weights by Chida—Hsieh [CH15], these methods yielded a proof of many cases
of the Bloch-Kato conjecture in analytic rank 0 when

(274 quadrant) e(f/K)=+1, j=0

under certain ‘level-raising’ hypotheses. More recently, the Euler system of Beilinson—Flach elements con-
structed by Lei-Loeffler—Zerbes [LLZ14, LLZ15] and Kings—Loeffler—Zerbes [KLZ17, KLZ20] (inspired in
part by earlier results of Bertolini-Darmon—Rotger [BDR15a, BDR15b]) provided an alternative approach
to similar rank 0 results (among other applications) under different mild hypotheses.

On the other hand, exploiting the variation of Heegner cycles in p-adic families, the first-named author
and Hsieh [CH18a, Cas20] (see also related work by Magrone [Mag22] and Kobayashi [Kob23]), obtained
results on the Bloch-Kato conjecture for Vy  in rank 0 in the cases

(3" quadrant) e(f/K)y=-1, j>r.
Contrastingly, in the cases where
(4*" quadrant) e(f/K)=41, j=>r,

the conjectures of Beilinson-Bloch and Bloch-Kato predict the existence of nonzero classes in Selgk (K, Vi)
coming from geometry (since €(f, x) = —1 and therefore L(f/K, x,r) = 0), but the construction of such
classes seems to fall outside of all the aforementioned methods.
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The ‘degenerate’ diagonal cycle Euler system constructed in this paper allows us to fill this gap, yielding
new evidence towards the Bloch-Kato conjecture for Vy , in analytic rank 1 in this case, while also providing
a new approach to the aforementioned results in the other cases:

e(f/K) =—1 e(f/K) = +1
15¢ quadrant 274" quadrant
0<j<r| [Kol88], [BD90], [Tia03], [Nek07], etc. | [BDO5], [CH15], [KLZ17], [KLZ17], etc.
Theorem 6.7.1 Theorem 5.5.1
3'? quadrant 4% quadrant
j>r | [CH184a], [Cas20], [Mag22], [Kob23], etc. -
Theorem 6.5.1 Theorem 5.7.1

To obtain our anticyclotomic Euler system classes, we exploit diagonal cycles attached to triple products
of modular forms with two of the factors having CM by K. This setting is also considered in the work of
the first-named author with Hsieh [CH22] on the conjectures of Darmon—Rotger [DR16] in the ‘adjoint CM
case’. The method of construction in this paper has recently been adapted by the second-named author
[Do24] to the case where two of the factors have CM by different imaginary quadratic fields, resulting in
an anticyclotomic Euler system for modular forms based-changed to a biquadratic CM field, together with
results on the Bloch—Kato conjecture, and a divisibility towards the Iwasawa—Greenberg main conjecture.

In future work, we intend to generalise our construction to totally real fields, a setting in which one finds
even more cases where the arithmetic of Rankin—Selberg convolutions falls outside the scope of Heegner
cycles and/or Beilinson—Flach classes.

0.3. Acknowledgements. The present article grew out of the second-named author’s PhD thesis [Do22],
supervised by Christopher Skinner. We heartily thank him for inspiring this collaboration, his guidance,
and optimism. We would also like to thank Rail Alonso, Haruzo Hida, Kartik Prasanna, Oscar Rivero,
and Romyar Sharifi for helpful exchanges related to various aspects of this work, and the anomymous
referee for a very careful reading of the paper, whose comments and suggestions helped us to signficantly
improve the exposition.

During the preparation of this paper, the first-named author was partially supported by the NSF grants
DMS-1946136, DMS-2101458, and DMS-2401321.

Part 1. The Euler system
1. PRELIMINARIES

1.1. Modular curves and Hecke operators. We give a precise description of the modular curves and
Hecke operators that will appear in our construction. The main references for this section are [Kat04, §2],
[BSV22, §2], and [ACR23, §2], where more details can be found.

1.1.1. Modular curves. Let M, N,u,v be positive integers such that M + N > 5. Define Y (M, N) to be
the affine modular curve over Z[1/M N| representing the functor

isomorphism classes of triples (F, P, Q) where E is an elliptic curve over S,
S < P, Q are sections of E over S such that M - P = N - @ = 0; and the map
Z/MZ x Z/NZ — E, sending (a,b) — a- P +b-Q is injective
for Z[1/M N]-schemes S. More generally, define the affine modular curve Y (M (u), N (v)) over Z[1/M Nuv]

representing the functor

isomorphism classes of quintuples (F, P, Q, C, D) where (E, P, Q) is as above,
P € C is a cyclic subgroup of E of order Mu,

Q@ € D is a cyclic subgroup of E of order Nv such that

C is complementary to Q and D is complementary to P

for Z[1/M Nuv]-schemes S. When either u = 1 or v = 1, we drop them from the notation.
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Let H be the Poincaré upper half-plane and define the modular group:

(1 0 M Mu
M (u), N(v)) = {'y € SLy(Z) such that v = <O 1> mod (Nv N )} .
The Riemann surface Y (M, N)(C) admits a complex uniformisation:
(Z/MZ)* x T(M,N\H = Y (M, N)(C)
(m, 2) — (C/Z+Zz,mz/M,1/N),

and similarly for Y (M (u), N(v))(C).

Let ¢ be a prime. There is an isomorphism of Z[1/¢M N]-schemes:

@ Y(M,N(0)) — Y(M((),N)
(E,P,Q,C) — (E/NC,P+NC 1 (Q)NC+ NC,(t~(Z-P+ NC)/NC)),

which under the complex uniformisation is induced by the map (m, z) — (m, £ - z).

1.1.2. Degeneracy maps. We have the natural degeneracy maps

Y(M,Nt) -2~ Y (M, N(¢)) —2~ Y (M, N)

y
Y (Me,N) L v (M(£), N) =2 Y (M, N),
where uy(E,P,Q)=(E,P,{-Q,Z-Q), v(E,P,Q,C) = (FE, P,Q), and fi4, vy are defined similarly. Put
pryi=wvgous: Y(M,N¢) - Y(M,N),
(E,P,Q) — (E,P,L-Q)
and
pro:=vpo@popu: Y(M,N¢) =Y (M,N)
(E,P,Q)— (E/NZ-Q,P+NZ-Q,Q+ NZ- Q).
On the complex upper half plane H, the map pr; (resp. pr,) is induced by the identity (resp. multiplication
by ¢). Moreover, py, fi¢, Ve, Vg, pry, pr, are all finite étale morphisms of Z[1/M N{]-schemes.

1.1.3. Relative Tate modules and Hecke operators. Let S be a Z[1/M N{¢p]-scheme where p is a fixed prime.
For each Z[1/M N/tp]-scheme X, denote the base change X5 = X Xz[1/anep) S Notate A = Ax to be
either the locally constant sheaf Z/p™Z(j) or the locally constant p-adic sheaf Z,(j) on X¢; for some fixed
j€Z and m > 1.

For the ease of notation, we may write - for M (u), N(v) (i.e. Y(-) = Y (M(u), N(v))). Denote by E(-)
the universal elliptic curve over Y (-). Then one obtains a natural degree ¢ isogeny of universal elliptic
curves under the base change by p; E(M(¢),N) — Y (M, N(¢)):

Ae: E(M,N(0)) = ¢y (E(M(£), N).
Denote by v. : E(-)s — Y(-)g the structure map. We also use vy, 7y and A, for the base change to S of the
corresponding degeneracy maps. Set:
T(A) = R'v..Z,(1) ®z, A and 7" (A) = Homu(7.(A), A)

where R%v., is the ¢-th right derivative of v., : E(-)sy — Y(-)se. When A = Z,,, this gives the relative Tate
module of the universal elliptic curve, in which case we will drop the Z,, from the notation.
Fix an integer r > 0. The (perfect) cup product pairing combined with the relative trace

T. @z, T. = R*v.Z,(2) 2 Z,(1)
allows us to identify 7 (—1) with .7*. Put
L,(A) = TSym, 7(A),  F,(A) = Sym, 7*(A),
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where TSym}, M is the R-submodule of the symmetric tensors in M®", Sym’, M is the maximal symmetric
quotient of M®", and M is any finite free module over a profinite Z,-algebra R. When the level is clear,
we shall simplify the notations, e.g. writing:

(1.1) L(A) = Ly Nw o (A), L =L0(Zy), S (A) =M@ .Nwr(A), T =T0(Ly).

Let .#" be either Z ,(A) or .7, .(A). Then there are natural isomorphisms of sheaves

vi(FunN) = Fune, Vi Fun)= Fuen
and these induce pullback maps
Hi (Y (M, N(O)s, Ty ) 2o Hi (Y (M, N)s, Fhy ) 2o HL (Y (M(0), N)s, F g )
and traces
He (Y (M, N(6))s, Zarne) — Ho(Y(M,N)s, F iy ) ¢ Ho(Y (M0, N)s, Fhy0).3)-
The finite étale isogeny A, induces morphisms
st Fune) = (T men) A0l (F meyn) = F e
and this allows us to define a pushforward
D = 0 New t Hy (Y (M, N ()5, F iy niey) — He (Y (M), N)s, F sy n)
and a pullback
D} 1= N o i+ Hiy(Y (M(0), N)s, F sy ) — His(Y (M, N(0)s, o).
The Hecke operator Ty and the dual Hecke operator T acting on HE (Y (M, N)s, Z} ) are defined by
Ty =g 0 Ppovy, T, :=uvpo®;ory.
Remark 1.1.1. Note the relations
deg(pe)Te = pry, opry,  deg(ue)Ty = pry, o pry,

as it follows immediately from the definitions.

For d € (Z/MNZ)*, the diamond operator (d) on Y(-) is defined in terms of moduli by

(E,P,Q,C,D) = (E’d71 P,dQ,O,D)

There is also a unique diamond operator (d) on the universal elliptic curve making the following diagram
cartesian:

E()s —2 B()s

i § l

Y()s — =Y ()s,
and this induces automorphisms (d) = (d)* and (d) = (d). on H (Y (-)s,Z.).
For any profinite Z,-algebra R and finite free R-module M, the evaluation map induces a perfect pairing
TSympM ®p SympM* — R,
where M* = Hompg(M, Z,). This gives a perfect pairing ., ®z, ;. — Z,, and therefore a cup product
() Ho (Y (g £+ (1) @z, H (Y (g 7r) = HE(Y (g Zp(1)) = Zy,
which is perfect after inverting p. Moreover, the Hecke operators Ty, T}, (d), (d)’ induce endomorphisms on

the compactly supported cohomology groups H} (Y(")g:<r), and by construction, (T, T;) and ((d), (d)’)

ét,c
are adjoint pairs under (-, ). The Eichler—Shimura isomorphism [Shi94]

Hg (Y1(N)g, Zr) ®z, C = My12(N,C) ® Sr42(N, C)

commutes with the action of the Hecke operators on both sides.
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1.2. Galois representations associated to newforms. Let f = Zzozl anq™ be a normalised newform of
weight k > 2, level T';(N;), and nebentype x . Let p{ N; be an odd prime. Fix embeddings i, : Q < C,
ip : Q < Q,, and let L/Q be a finite extension containing all values iz} (a,) and iz o xy. Let B be
the prime of L above p with respect to i,. Then Eichler-Shimura and Deligne construct a p-adic Galois
representation associated to f:

ps=prp: Gq = GLa(Ly)
which is unramified outside pN;, and characterised by the property for all finite primes ¢ { pNy,

trace(py (Froby)) = iylar),  det(ps(Frobe)) = i, (xs (1),

where Froby is a geometric Frobenius. Moreover, p¢ sy is known to be irreducible [Rib77], hence absolutely
irreducible since the image of the complex conjugation has eigenvalues 1 and —1.

1.2.1. Geometric realisations. The representation ps g can be realised geometrically as the largest subspace
Vf of
H, (Yi(Ny)g, % k—2) @ L
on which T} acts as multiplication by a, for all £{ Nyp and (d) = (d)* acts as multiplication by xs(d) for
all d € (Z/N;Z)*. If N is any multiple of Ny, then the above subspace with Ny replaced by N gives rise
to a representation V(INV) isomorphic (non-canonically) to a finite number of copies of V5.
The dual va = Hom(V}, L) can be interpreted as the maximal quotient of

Hg (Yi(Nyp)gs Lrh—2(1)) @ Ly

on which the dual Hecke operator T acts as multiplication by a, for all £ { Ngp and (d)’ = (d). acts as
multiplication by x¢(d) for all d € (Z/NyZ)*.

Let O be the ring of integers of L. In this paper we shall be mostly working with va and the Gq-stable
O-lattice TY C V' defined as the image of Hj (Y1(Nf)g, Zr—2(1)) ® O in V.

*

1.2.2. The p-ordinary case. If f is ordinary at p, i.e. iy(a,) € O, then the restriction of Vy to Gq, C Gq
is reducible, fitting into an exact sequence of Ly[Gq,]-modules

0=V5 = Vi =V, =0

with dimp,,, VfjE = 1, and with Gq,-action on the subspace Vf+ given by the unramified character sending

Frob, to ey, the unit root of z* — a,z + x;(p)p*~*. By duality, we also obtain an exact sequence for V;/
restricted to Gq,

V,+ Vv V,—
(1.2) 0>V, =2V =V =0

with va’+ ~ (Vi)Y - k)(x;l), and with the Gq,-action on the quotient va’_ given by the unramified
character sending arithmetic Frobenius Frob,, Lo Q.

1.3. Patched CM Hecke modules. In this section, after explaining our conventions on Hecke characters,
we recall the construction of certain patched CM Hecke modules from [LLZ15, §5.2].

1.3.1. Hecke characters and theta series. Let K be an imaginary quadratic field of discriminant —Dg < 0
in which p = pp splits, with p the prime above p induced by i,.

We say that a Hecke character ¢ : A% /K> — C* has infinity type (a,b) € Z2 if 100 (T00) = 22,27 for all
Too € K ®q R = C under the identification induced by is,. Then the character sending z +— (z)2 22"
is a ray class character, hence it takes value in a finite extension L/K. For 8 | p the prime of L above p
induced by i, we define the p-adic avatar ¥y : G — L% of ¢ as follows. Let reck : Ay /K — G4 be the
geometrically normalised Artin reciprocity map. For g € G, we take x € A such that reck (x) = g|xa»
and define

Yop(g) = ip 0 i) (()a 2l )wpal.
Since there should be no confusion, in the following we shall also use 1 to denote its p-adic avatar.
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Let 1) be a Hecke character of K of infinity type (—1,0), conductor dividing f, and with = — ¥ (2)z
taking values in a finite extension L/K. Viewing ¢ as an L-valued character on the group of fractional
ideals of K coprime to f, the theta series attached to 1 is

b= > w(a)g"<a® € Sy(T1(Ny), xyex)
(u,f):l

where Ny, = N /q(f) Dk, Xy is the unique Dirichlet character modulo Nk /q(f) such that ¥((n)) = nx,(n)
for all n € Z with (n, Ng/q(f)) = 1, and e is the quadratic Dirichlet character attached to K/Q. The
cuspform 0y is new of level Ny, if | is the exact conductor of 9, and its p-adic Gq-representation satisfies

Voo 2ndQLyp(e), Vel = ndQLyg(v),

1.3.2. Hecke algebras and norm maps. Let n C Ok be an ideal divisible by f. Put N = Ng,q(n)Dg. Let
K, be the ray class field of K with conductor n, and H,, = Gal(K, /K) be the ray class group of K modulo
n. For an ideal ¢ of K coprime to n, let [€] be the class of ¢ in H,.

We denote by K (n) the largest p-extension of K contained in K, so Gal(K(n)/K) & H,(f’)7 where H,Sp)
is the largest p-power quotient of H,,.

Proposition 1.3.1 ([LLZ15, Prop. 3.2.1]). Let T'(N) be the subalgebra of Endz(H'(Y1(N)(C),Z)) gen-
erated by (d)’ and T, for all primes £. There exists a homomorphism ¢, : T'(N) — O[H,] defined by

n(T7) = Y _[0w(D),

[
$n((d)') = xu(d)ex (d)][(d)],
where the sum is over the ideals | C O with [{n and Nk, q(l) = £.

For n’ = nl, with [ a prime, put N’ = Ng,q(n')Dk. As in [LLZ15, §3.3], we consider the norm maps

N OLHY) @1 (viez,.0, HE (VN Vg, Zp(1) = OLHP) 8102, 6, Ha(YVi(N)g Zp(1))
defined by the following formulae:
o If [ | n then
NJS, =1®pry,;
e If [{n is split or ramified in K, then

/ n[r
Nnn :1®pr1*_%®prﬂ*;
e If [{nis inert in K, say [ = (£), then
/ YO
'/\/‘I‘tl1 = 1®pI‘1* - 62 ®pr25*7

where pry, : Y(N') = Y (N) denotes the degeneracy map induced by z + ¢2z, for z on the complex
upper half plane H.

By composition, the definition of ./\f,lf' is extended to any pair of ideals n | n’.

1.3.3. Patching. Note that since p splits in K, the restriction Vj, \GQP is reducible.

Definition 1.3.2. We say that v is p-distinguished if the residual representation pg, is such that pg,, |GQp
has non-scalar semi-simplification. And we say that (¢, f) satisfies Condition # is the following hold:

e 1) is p-distinghished;

o if p|f then p1f.
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It follows from the proof of [LLZ15, Prop. 5.1.2] that if (¢, ) satisfies Condition #, then for any ideal
n C Ok divisible by f and p and with (n,p) = 1, the maximal ideal of T’(N) defined by the kernel of the
composite map

T/(N) 2% O[H,] 28 0 — 0/,
where ¢, is the map from Proposition 1.3.1, is non-Eisenstein, B-ordinary, and p-distinguished in the sense

of Definitions 4.1.2 and 4.3.3 of [LLZ15]. Through its use in [op. cit., Prop. 5.2.5], this condition is to allow
f and m to be possibly divisible by p in the following result.

Theorem 1.3.3. Let A®) be the set of ideals m C O with p t m, and put

7 A®) if (¢,f) satisfies Condition @,
B {mec AP : pim)  otherwise,

and A; = {fm : m € A}. Then there is a family of Gq-equivariant isomorphisms of O[H,(lp)]—modules
vo : O[HP) @1 (3)02, 0, HE(V(N)g: Zp(1)) —> TndF O(v")

indexed by n € A, such that for any n,n’ € A; with n|n' the following diagram commutes:

O[HY) @ (w1020 HE V(NG Zp(1) —2= Tnd R, O(ug")

N l Norm"’ l

OHP) @1 (nyezy 00 Ha(Vi(N)g Zp(1)) — o> Ind R, O(51),

where Normﬁ/ 15 the natural norm map.
Proof. This is a reformulation of Corollary 5.2.6 in [LLZ15] in the case where p splits in K. (]

1.4. Diagonal classes. We sketch the construction of the diagonal classes in the triple product of modular
curves Y1(N) using classical invariant theory, following Section 3 in [BSV22].

With the notations of §1.1.3, we put Y1(N) = Y1(N)q, and let E;(N) = E1(N)q denote the universal
elliptic curve over Y;(N), together with the structural map v : E1(N) — Y1(N). Let . = R'w,Z,(1) be
the relative Tate module of the universal elliptic curve, and let .7* = Homgz (.7, Z,) be its dual. The cup
product pairing combined with the relative trace

T @z, T — R*v.Z,(2) 2 Z,(1)
gives a perfect relative Weil pairing
<_7_>E1(N)poo : ‘7®Zp T = Zp(l)’

which allows .7 (—1) to be identified with .7*.

For a fixed geometric point 7 : Spec(Q) — Y1 (IN), denote by G,, = ' (Y1(N),n) the fundamental group
of Y1(IN) with base point 7. The stalk of 7 at 1, denoted .7, is a free Z,-module of rank 2, equipped
with a continuous action of G,. Fix a choice of Z,-module isomorphism ¢ : 9, = Z, & Z, such that
(T, 9) By (V)00 = C(7) A((y) (where we identify A’ Z2 with Z, via (1,0) A (0,1) = 1). One then obtains a
continuous group homomorphism:

Pt gn — Autzp(%) =~ GLQ(ZP)

By [FKS88, Prop. A L8], the category of locally constant p-adic sheaves on Y; (V)4 is equivalent to the
category of p-adic representations of G, via # — %,. Using p,, one can associate with every continuous
representation of GLa(Z,) on a free finite Z,-module M a smooth sheaf M on Y;(N) such that Mf;’t =M.

Let S;(A) be the set of 2-variable homogeneous polynomials of degree i in A[z1, z2] equipped with the
action of GLa(Z,) by gP(x1,22) = P((z1,22) - g) for all g € GL2(Z,) and P € S;(A). Its A-linear dual
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L;(A) is also equipped with a GLa(Z,)-action by g7(P(z1,22)) = 7(97 ' P(z1,22)) for all g € GLa(Zy),
P e S;(A), and 7 € L;(A). As sheaves on Y7(N)q, one has
Li(A)% = Z;(A) and S;(A)% =.7;(A).
Hence 7, = Ly(Z,) and Z,(1), = /\2 Ty = det™'. This implies that for any j € Z, and any p-adic
representation M of GLa(Z,,):
(1.3) H°(GLy(Z,), M @ det ™) — H(G,, M @ det ™) = H (Y1 (N), M (j)).
Assumption 1.1. Let r = (71,72, 73) be such that r; € Z>g, (r +r2+713)/2=1 € Z>p, and r; +1; > 1},
for all permutations (i, j, k) of (1,2,3). We call this a balanced triple.
Under the Assumption 1.1, let
Sy = ST’l(ZP) ®z, St (Zp) ®z, Srs(zp)
with its natural GL2(Z,)-representation from above, and let
Sy = S::t = yn(zp) ®Zp yrz (Z;D) ®Zp yrs (Zp)'

We identify S, with the module of 6-variable polynomials Z,[x1, Z2, Y1, y2, 21, 2] which are homogeneous
of degree 71, 12, and r3 in the variables (x1, z2), (y1,¥2), and (21, 22) respectively. By the Clebsch—-Gordan
decomposition of classical invariant theory, the following is a GL2(Z,)-invariant of S, ® det™":

T T r—r3 T . r—ro r—r1
Det% :=det [~ ' 72 det (71 72 det (91 92 ,
Y1 Y2 Z1 %2 Z1 22

i.e. Detly € H(GL2(Z,), Sy @ det™"); we denote its image under (1.3) as
(1.4) Detly € HY (Yi(N), S (r)).
Let pj : Y1(N)® — Y1(N) for j € {1,2,3} be the natural projections and denote
y[r] =p] S (Zp) ®z, j28 yrz(zp> ¥z, D3 S 1y (Zp)7
and
WNJ. = Hgt(yl(N)%,y[r](T—l—Q)), WN7I‘ :wN,r®Qp-
Because Y1 (IV)g is a smooth affine curve over Q, we have HZ (Yl(N)%,Y[r] (r +2)) = 0. Hence by the
Hochschild—Serre spectral sequence,

HP(Q, HY(Yi(N)G, 1 (r +2)) = HE T (M(N)gG, S (r + 2))

3
Q
one obtains

HS : Hgt(Yl(N)sa y[r] (T' + 2)) - Hl(QawN,r)~
If welet d : Y1(N) — Y1(N)? be the diagonal embedding, then there is a natural isomorphism d* %) = .7,
of smooth sheaves on Y1 (N)g. As d is an embedding of codimension 2, there is a pushforward map

di : HG(Yi(N), Sx(r)) = Hg (Yi(N)?, S (r +2)),
and we can consider the class
(S o d.)(Detly) € H'(Q,Wn.x).

Dually, by the bilinear form det* : L;(Z,) ®z, Li(Z,) — Z, @ det™* defined by det*(r ® 0) = 7 ®
o((z1y2 — w2y1)") that becomes perfect after inverting p, we obtain an isomorphism of GLa(Z,)-modules
(15) S0 51(Qy) = Li(Qy) ® det’,
and so s; : (Q,) = Zi(Qp) ®z, Zy(—i) by the above equivalence of categories. We similarly define the
sheaves £ on Yi(N) and £} on Y1(N)?, and set

VN,r = Hgt(yl(N)%ag[r](2_r))a VN,I‘ :VN,r®Qp-
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Let sy = Sy, @ Sp, ® Sy, which gives an isomorphism Wy, — Vi r, and finally as in [BSV22] put
(1.6) KENyr = (S« 0HS 0 d,)(Detly) € Hl(Q, VNr)-

As explained in detail in [loc. cit., §3.2], the class Ky, is closely related to the p-adic étale Abel-Jacobi
image of the generalised Gross—Kudla—Schoen diagonal cycles on Kuga—Sato varieties studied in [DR14].

Proposition 1.4.1. For a prime number £ and a positive integer m, if (ml, N) =1 then

(pri*a prj*a prk*)‘y‘:Nmé,T = (*)HNm,r

where

(1,7, k) *

(67171) (Z— 1)(T£,171)
(1,¢,1) (£ —1)(1,Ty, 1)
(1,1,0) (0 —1)(1,1,Ty)
(1,6,0) | ¢~ (£ —1)(Ty,1,1)
(¢,1,0) | (¢ —1)(1,T},1)
(€,0,1) | 07— "3(£ —1)(1,1,T7)

If (¢,m) =1 then we also have

(4,4, k) *
D (-1
(0,6,0) | (22— 1)

Proof. See equations (174) and (176) in [BSV22]. (The proof of the above relations in op. cit. is given for
¢ = p, but the same argument applies for any prime ¢ as above.) O

2. MAIN THEOREMS

In this section, for a newform f € Ss,(I'o(Ny)) of weight 21 > 2 and a family of anticyclotomic Hecke
characters x of K, we construct a family of cohomology classes for the conjugate self-dual representation

vax = va(l — ’I") ® X71

defined over ring class extensions of K, and prove that they satisfy the Euler system norm relations.

The construction builds on the results from [BSV22] and [LLZ15] recalled in the preceding section, and
is done in two steps: we consider (suitable modifications of) diagonal classes attached to triples (f, 0y, , 04,)
consisting of our fixed newform f and a pair of theta series 6, , 0y, attached to Hecke characters 1,12
of K satisfying the self-duality condition

Xopr Xopz = 1,

and first give the construction in the case where (f,0y,,68y,) have weights (2,2, 2), resulting in the con-
struction of classes

2 g € HU(K M), Thypon-1)s 2fpnm € H (K[m], Tf y, ysn-1),

where 9§ is the composition of 1y with the action of the non-trivial automorphism of K/Q, for which we
prove the tame norm relations (see Theorem 2.2.6 and Corollary 2.3.1).

Replacing (0y,,0y,) by a pair of CM Hida families (0¢,(Z1), 0¢,(Z2)) attached to ray class characters
&1, & of K satisfying x¢, xe, = 1, and considering (suitable modifications of) their associated ‘big’ diagonal
classes, we extend the construction to all weights 2r > 2 and more general anticyclotomic Hecke characters,
and deduce the proof of the wild norm relations (see Theorem 2.4.2).

Throughout we use the notations introduced in the preceding sections, so in particular K is an imaginary
quadratic field such that

(spl) p = pp splits in K,
with p the prime of K above p induced by i,. Further, we assume that p{ 6N and that
(Cn) p Jf hKa
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where hy = |H;| is the class number of K

2.1. Construction for weight (2,2,2). Suppose f has weight 2, and 91, 1o are Hecke characters of K
of infinity type (—1,0) and modulus f1,fo C Ok with

(p.fi) =1
for ¢ = 1,2, and satisfying Xy, x4, = 1. Let N =lem(Ny, Ny, , Ny,) and for every positive integer m put
Y(m):=Y (1, Nm) =Y (Nm).
When m = 1, we drop it from the notation, so Y := Y1 (N). We begin with the cohomology class
(2.1) Rl = Fnme € HY(Q, H (Y (m)g. Z,(2))
of (1.6), where r = (0,0,0), and put
R = (pr,,., L DR € HY(Q, HE (Vg x Y (m)g Z,(2)),

where, writing m = [, ¢; as a product of primes ¢;, pr,,,, is defined as the composition of the pushforward
by the degeneracy maps pr,,. Applying the Kiinneth decomposition theorem [Mil13, Thm. 22.4], the class
Rg) is projected to

(2.2) R € HY(Q, Hy (Yo, Zp(1) © HE (Y (m)g, Zp(1)) @ HA(Y (m)g, Zp(1))(—1)).

Now we restrict to squarefree integers m > 0 divisible only by primes split in K with (m,pN) = 1, and

write
m=mm
according to a fized choice of splitting £ = Il for each prime £ | m. We also fix a triple of level-N test
vectors
(5 0y, 0y,) € S2(Do(N))[f] X S2(P1(N)) [y, ] X S2(T'1(V)) [0, ]-

(Even though it will not be reflected in the notation, our construction will depend on this choice; in later
applications we shall specify the choice of test vectors when needed.)

Since the maps used in the construction /%52) are compatible with correspondences, after tensoring with
O and taking (f, 0y, , 0y, )-isotypic components, the above process and the choice of test vectors give rise
to a class

~(4
R e € HHQ,TY © HE(Yi(Ny,m)g, Zp(1)) @ (ny ) OLH L]
® HY (Y1 (Nyym)g, Zp(1) @ (v, my OLH PR (1)),

fomu
where the labeled tensor products are with respect to the Hecke algebra homomorphisms

(2.3) dirm : T'(Nyym) = O[HPL] i - T/ (Nyym) — O[HPL]

fim fam
of Proposition 1.3.1, and we used f to take the image under the projection H;;t(Ya, Z,1))[f] = va in the
first factor, and similarly for Hélt(Y(m)a, Z,(1))[0y,] — HL (Y} (Nwm)a, Z,(1)) using éwi, i=1,2.
By the isomorphisms from Proposition 1.3.3:

Vim © HE (Y1 (Nyym)g, Zp(1)) @ (g, my g, OLHLY
D

) ~ _
Pl IdR O,
Vi + Hy (Vi (Nyam) g Zp(1)) @1 (v, m) 1, OLHL

(2.4) o a B
= Ind ) O3 1),

]

the class ’%5:,1'1)/)1,1,02,777] defines an element in

HY(QTY ®0IdY;, » O h) @0 I - 0@ 1) (~1)
= 0Y(Q, T} ®0 MdRO, - [H{")] ©0 nd RO, [HP](-1)),

2m
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where for the second factor in the triple product we use the G g-module isomorphism Indg(flm)O(d); 1) =

wal [Hf(f’m, with wal standing for the free O-module of rank one on which G acts via ¢! and with

Hj, w being equipped with the G k-action arising from the projection Gx — H f(lp 21; and likewise for the last

factor in the triple product. Taking the image under the maps induced by Hj, — Hy and Hy,m — H,
(4)

from F@f’wl,w%m we obtain
(2.5) B e € HY(Q, T} ®0 dRO, [HY] ©0 d RO, [HL(~1)).

2.1.1. Projection to ring class groups. Directly from the definitions of the class groups involved, we deduce
the commutative diagram with exact rows

O x O — (O /m)* x (Og/M)* —— Hy X Hfg — Hy x Hj ——1

gy

O ————— (O /mOk)* H,, H, 1,

where the unlabelled vertical arrow is given by the restriction map

o (0K Ol Ke)-
Since we assume p 1 6hg, taking p-primary parts this map induces an isomorphism
(2.6) HD) 25 1P « B,

Given an integer n > 0, let H|[n] be the ring class group of K of conductor n, so H[n] ~ Pic(O,,) under
the Artin reciprocity map, where O, = Z 4+ nOg is the order of K of conductor n. Let H[n| (P) be the
maximal p-power quotient of H[n], and denote by K[n] be the maximal p-extension inside the ring class
field of K of conductor n, so H[n]®?) = Gal(K|[n]/K).

Proposition 2.1.1. Suppose p 1 6hx and m > 0 is an integer divisible only by primes split in K. Then
writing m = mm and identifying H,gf) with H,gf') X Hg) as in (2.6), we have an exact sequence

1— (Z/mZ)® 25 HP x HIP) T8 Fm]®) — 1,

where the map A sends a — ([a], [a]) for every integer a coprime to m. Moreover, if £ m is a prime that
splits in K, the projection ma sends

[A] x [A] — Froby
for every prime \ of K above £, where Froby is the geometric Frobenius element of A in H[m]®).

Proof. The first part is clear from the above discussion together with the commutative diagram with exact
rows

O;; (OK/’ITLOK)X H,, H, 1
Ok /2" — (O /mOk)* [(Z/mZ)* H[m] Hy 1,

where the vertical arrows are given by the natural projections. The second part follows from the functo-
riality properties of Frobenii. O



16 F.CASTELLA AND K.T.DO
. . ~(5 .
Now we can consider the image of ngc 2&1 ba,m under the composite map

dR0, 1 [HY)] ©0 IndRO,, - [HQ]L,Indgow;lw;l[Hﬁf)xH@]

m m

&a SR
dR 0, 1,1 [H[m]®)],

where the horizontal arrow is the map determined by ¢1 ® ¢do — £(d1 ® o) with £(d1 ® ¢2)(g) = d1(g91) @
d2(g2) if g=(g1,92) € HP x Hg), resulting in the class

- (6

B wam € HY(QTY ®0 MdRO, 1,1 [H[m]P)(-1)).
Definition 2.1.2. For m > 0 any squarefree integer divisible only by primes £ 1 pN split in K, we define

Rfar e € H (K], TY (v1 '3 1) (—1))
to be the image of n; 1)p1 o,m under the isomorphism
HY(Q,TY ®0 dR0, 1, +[H[m]P)(~1)) ~ H'(K[m], T} (v v ") (~1))
given by Shapiro’s lemma.
We finish this section by recording the following observation for our later use.

Lemma 2.1.3. For any integer m = mm divisible only by primes split in K, and any prime £ = Il split in
K, the following diagram is commutative:

mdR0, 1 [HY)] 90 MdRO, 1 [HL] —— Wd RO, -1, 1 [H[m) @]

m

J{Norm'"[@Normm’ iNormme
mdRO, - [HY] ©0 MdRO, 1 [HY] ——> dF O, 1,1 [H[m]®],
where the horizonal arrows are given by the composition Ea in (2.7).

Proof. This is clear from the explicit description of the maps involved. O

2.2. Proof of the tame norm relations. Let m > 0 be any integer for which we have the class &y, ,,m
of Definition 2.1.2.

Proposition 2.2.1. Let £ = [l be a prime split in K and coprime to mpN. Then

o . nne) = (6= 1) (aa() = 2020 g gy - 2020

+ 0= 020820 0 1)) Ry )

Proof. In the notations of Theorem 1.3.3, for any n = fm € A; put
H' (i, fm) = H}, (Vi (Nym)g. Zp(1) @r(vym) OLHR).
Then from Lemma 2.1.3 we have the following commutative diagram:
HY(Q, T ® H' (b1, frml) @ H' (2, faml)(=1)) —— H (K [md], Ty (¥ ", )(~1))
(2.8) ll@Ng‘,‘[@N,‘;“ lNormﬂ"

HY(Q,TY @ H' (1, frm) @ H' (2, f20)(—1)) —— H' (K[m], Ty (v v5 ')(-1)),
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where, for m’ € {ml,m}, the horizontal arrows are given by the maps induced by the projections
HY (g, frm’) 220 mdR ;. O ") ~ mdRO, L [H),] — Wd RO, [HE))
H (6, Fyi) =25 Wnd @ 2 O3 1) ~ ndR O, [H"))] — Ind RO, 1 [HY)]
from Theorem 1.3.3 together with the map £a in (2.7). Now, tracmg through the definitions we compute:
il = (2
10N @ N)(F)
= (LMY @ AT Pr e 1. 1) (Rip)

= (T 1, 1) (Pre @ N & NE)(R))

= (prm*7 17 1) (pré* X(l & Pry, — wl(;)m ® pr@*) X (1 ® Prix — % ® pr@*)) (’%22)
NI i

= ( L) 1 1) ((préwprlwprl*) - 1/}1(6)[ ] (pré*vpré*7pr1*) - wz(g)[ ] (pré*7pr1*>pré*)

%(m X m)(Pfe*a PTys, pré*)) (I%SLZ)

Together with Proposition 1.4.1, we thus obtain

+

ROl
¢

(Lo N & NV = (6= Donr 1) (71,0 - PO 0 - 1,77

+ 1080 g0 e+ ) )
SO 1 g - 27,2200

+ 2O e ) 62,
and from this it follows that
(1o Ny @ N3 (& fwl,wz,me)

= (0= 1)(ar) = 2P 0010 + 020 - a1 + 0 07 228

+ 2O s e 1)) 55,0

Y2
(! )1/)2( )

= (0= 1) () - (1 x 1) - 20220

D1 (02 (1) ) (=
+ (1= =22 (0 [0) ) (RE, )
In light of the commutative diagram (2.8), this yields the result. O

Remark 2.2.2. The appearance of the factor (¢ — 1) in Proposition 2.2.1 can be traced back to the
relations deg(u¢)Ty = pry, opri and deg(u)T; = pry, opry, i.e., it is caused by the degeneracy map pp. In
the next subsection we shall get rid of this extra factor.

Remark 2.2.3. We want to emphasize that Proposition 2.2.1 is the key result for the construction of our
anticyclotomic Euler system for va(wflwgl)(—l). In fact, with the factor (¢ — 1) stripped out, the term
on the right-hand side of Proposition 2.2.1 can be massaged to agree with the local Euler factor at [ of the
Galois representation [va(wl_lwgl)(fl)]v(l) = Ty (¢112)(2), giving the correct norm relations.
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2.2.1. Removing the extra factor (¢ —1). Adapting an idea from [DR17, §1.4], we now introduce a modifi-
cation of the classes Ky y, ,,m for which we can prove an analogue of Proposition 2.2.1 without the extra
factor (£ —1).

We begin by noting that for any prime £ { N the degeneracy maps pry,pr, : Y1(N¢) — Y1(N) can be
factored as

Y1 (INY) Y1 (NY)
Y(1,N(0)) 77— Yi(N) Y(1,N(f)) - Yi(N),

where m; and 7, are a non-Galois coverings of degree £+ 1, and we recall that p, is a cyclic Galois covering
of degree ¢ — 1.
Denote by

(2.9) Dy, = {({d),{d)) : d € (Z/NmZ)*, d=1 (mod N)}
the set of diamond operators acting diagonally and freely on Y;(Nm)?, and set
Wi (Nm) = (Y1 (Nm) x Y1(Nm))/Dp,.
Let &%) be as in (2.1), and let
ki) € HY(Q, HE (Y (1,N(m))g x Wi(Nm)g, Zp)(2))
be the image of (fimx, 1, 1)(R sn)) under the natural map induced by the projection Y;(Nm)? — Wi(Nm),
which is an étale morphism of degree ¢(m) = \(Z/mZ)X| Thus, the class x4 is defined by the relation

Proposition 2.2.4. For any prime number { and positive integer m such that (m,€) =1 and (ml¢, N) =1,
we have

(T Prjs, pfk*)ﬁgz = (*)ngll)’

where
(Z7jak> * (Z,j,k) *
(¢,1,1) | (Te,1,1) | (£,1,0) | (1,1,,1)
(L,6,1) | (1,Tp,1) | (£,6,1) | (1,1, z/)
(1,1,0) | (1,1,Tp) | (1,1,1) | (¢+1)
(1,0,0) | (T},1,1) | (£,6,0) | (£+1)

Proof. Directly from the definitions we find

~(1 1
(:U/’m*’ dm*) (pré*a Pl prl*)’%gnz = (71-@*7 Prix, Pr1*)(ﬂmé*, dm@*) 'En%

= ¢(m£) (TF(*) Pris, pru)“ﬁi%

while on the other hand, from Proposition 1.4.1 and (2.10) we have

(Homes Dons) (DX gss D1 PR S) = (s o) (€ — 1) (T2, 1, 1))

= p(m) (£ — 1)(Ty, 1, 1))

Since ¢(ml) = (¢ — 1)¢(m) according to our assumptions, this shows the result in the case (i,7,k) =
(¢,1,1) and the other cases are shown in the same manner. O

Now we want to proceed as above to obtain from the new k'Y a construction of classes satisfying the

correct norm relations (i.e., without the factor £ —1). This requires a careful study of the étale cohomology
of the quotient Y (1, N(m)) x W1(Nm).
We begin with the Hochschild—Serre spectral sequence:

EY® = HP(Dyy, HY, (Y (1, N(m))g x Yi(Nm)%, Zp)) = HE (Y (1, N(m)g x Wi(Nm)g, Zy).

ét,c
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This yields the exact sequence

(Ldy) 03 d9° 29
E2 E2 )

(2.11) E — H}, (Y(1,N(m))g x Wi(Nm)g, Zy)

where F is naturally identified with a subquotient of E1 o E22 o1 Thus, we see that the difference between
the two middle pieces are classes coming from HY (Y( ,N(m))a X Yl(Nm)%7 Z,) with 0 < ¢ < 2.

ét,c
From the Kiinneth decomposition [Mill3, Thm. 22.4], each of these classes will have a factor from either
Hy, (Y (1,N(m))qg, Zp) or HE, .(Yi(Nm)g,Zy,). These vanish because étale cohomology of affine smooth

ét,c
curves with compact support vanishes in degree zero. Hence, we obtain an isomorphism

) H3 Dy,

ét,c

HE, (Y (1, N(m))g x Wi(Nm)g. z,) -2, (Y(1,N(m)gq x Yi(Nm)g, Z))

As in the proof of [DR17, Lem. 1.8], Poincaré duality implies from (2.11) that the following map

(1 dwz*)

(2.12) HE (Y (1, N(m))g x Wi(Nm)g, Zp) = HE (Y (1, N(m))g X Yl(Nm)% zp))Dm

is also an isomorphism. Therefore from (2.12) and the Kiinneth decomposition, it follows that we get a
natural map

1,d
L)y 1 (v (1, N () Z)®

He (Y1 (Nm)a, Z,) ®p,, He (Y1 (Nm)da Zy)).

(2.13)  HZ(Y(1,N(m))g x Wi(Nm)g, Z,)

Now we put k2 = (T, 1, 1)mm , and define

r € HY(Q, Hy (Yi(N)g, Zy) ® Hy (Yi(Nm)g. Zp) ©p,, Hy(Yi(Nm)g, Zp)(—1)),

to be the image of x4 under the map (2.13).

Note that taking D,(,]f)—coinvariants (where D,(,]f) denotes the p-part of D,,,) is compatible with the map &a
n (2.7), since by Theorem 1.3.1 for ({(d), (d)) € D we have ¢ ((d)’) x ¢m((d)’) = [d] x [d] € HY x HP,
and this is in the kernel of ma. Thus, applying to mg) the same process we used above to go from /%5,?{) to
the class K.y, y,m Of Definition 2.1.2, we obtain

Kfap1,pa,m € H* (K[m],T}/(’L/J;ll/);l)(—l))

Proposition 2.2.5. Suppose m is a positive squarefree integer divisible only by primes q 1 pN split in K.
Let £ { pmN be a prime split in K. Then

Norm k7 aons) = () = 2020 10 x 1) - 2O @ )

#0200 0 1)) (1)

Proof. After the above discussion, the same calculation as in the proof of Proposition 2.2.1 applies, replac-
ing the use of Proposition 1.4.1 by Proposition 2.2.4. (]

Therefore, we arrive at the following theorem:

Theorem 2.2.6. Suppose p > 3 is a prime split in K with p{ hi. Let m = mm run over the squarefree
integers divisible only by primes split in K and coprime to pN. Then there exists a collection of cohomology
classes

Zf b1 ha,m € H' (K[mLTJY(wfIQbEl)(—l))
such that for every prime £ = Il split in K with ({,mpN) = 1 we have the norm relation

NormK{ ”]] (2 41 ipa,me) = PU(Froby)(2£ 4, pa,m)s

where Pi(X) = det(1 — X - Froby | T (¢142)(2)).
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Proof. Denote by @ the factor appearing in the right-hand side of Proposition 2.2.5. Recalling that [I] x []
corresponds to Frob; € H[m] (») under the map 7a of Proposition 2.1.1, we find the following congruences
as endomorphisms of H'(K[m], Ty (5 '¢5")(—1)):

— Y (N([0 < [1]) - @

= —ar( )b (N([10 = [1]) +
= P (Frob;) (mod ¢—1),

2
1207 19 g2 + 2020 g 1)

using the relation 1192((£)) = Xy, X (£)¢? = €2 and the fact that [¢] x [¢] is in the kernel of ma for the
second congruence. Therefore, by Lemmas 9.6.1 and 9.6.3 in [Rub00] (which will not alter the bottom
class of our Euler system), the existence of classes 2y, yy oy, m With 27y 4s.1 = K101 and satisfying the
stated norm relations follows from Proposition 2.2.5. |

Remark 2.2.7. Similar to what we did for [ a split prime of K, when [ = ({) is inert in K, we also obtain
such a norm relation like in Theorem 2.2.6. Remember that in this case, we push forward from level N¢2
to level N. First, note that the norm map from Proposition 1.3.1 is then given by

(O[]
{2

Second, to calculate (1 @ N™ ®N§€)(Hf12), just like in Proposition 2.2.1, we use the table in Proposition
1.4.1 together with

Nr?(é) =1®pry, — @ PTyps

(prl*vprl*vprl*)(TZa 17 1)Hm = {(T£27 1a 1) - (K + 1)(<€>v 1a 1)}'%1(73)7
(DT P 1) (1, L, TR, = {(1, 1, T72) — (£ +1)(1,1, () }x2,

and arrive at

m 2(0+1
o650, ) = (€~ 1 (a1 = (0 1) = 22

6
%10+ 4+ DX ) (5%, 0.0
Instead of Proposition 2.1.1, we use the following exact sequence

1— H, 2 H, xH, — H, —1,

combining with the quotient H,, — H[m], which makes [¢] x [¢] acting trivially on the cohomology class.
After removing the extra factor (¢ — 1) and multiplying with —1 on the RHS factor, we obtain the correct
Euler factor modulo #2 — 1:

Py(Froby) = 2 + 20 — a,(f)?.
Note that ((+ 1)/ = ({+ 1) =*+ L =1+ ¢ (mod ¢? — 1) and the twist ¥ (€)12(€)/0* = 1.

2.3. A variant. With a slight modification of the construction in the preceding sections, we can obtain a
similar collection of cohomology classes for T/ (¢ L5 €)(—1) satisfying the corresponding norm relations.

Here 1§(0) = 12(coc™!) denotes the composition of ¢, with the action of the non-trivial automorphism
of K/Q. Indeed, following Section 2.1, we replace the second map in (2.3) by

Fam + T'(Nyym) — O[H )]
and the second map in (2.4) by
Viom  HE (Y1 (Nyym)g, Zp(1)) ©2(N,ym) iy OLHER] > Tnd 3, O(51).
Thus, similarly as in (2.5) we obtain
7P € HY(Q, T} ©0 ndR0,— [HY] @0 mdFO, 1 [HT](-1)).

2,m
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The diagram (2.7) is then replaced with

mdR0, - [HY] ®0 Md RO, J[HP] 2 dR0, 1 [HY] 00 A0, [HY]
(2.14) e RO [HY x Y]

N

AR 0,1, [H[m]®)],

where the isomorphism v : Indgowgl [H,gf’ )] — Ind%@wgc [Hg)] comes from the action of complex conju-
gation on the inducing representation.
Consequently, Lemma 2.1.3 now turns into the following commutative diagram:

mdR0, - [HY)] ©0 Md RO, (HP) 2 a2 Oy e [H[ml)®)
(215) lNormzl(@Normm[ iNormme
mdR0, - [HY] ©0 Md RO, (HP) 2 1 Oyt e [H[m]P].

The same process as above then leads to the following ‘conjugate’ variant of Theorem 2.2.6:
Corollary 2.3.1. With notations as in Theorem 2.2.6, there exists a collection of cohomology classes
2f i am € H (K[m], T (v '3 )(=1))
such that for every prime £ = [l split in K with (¢, mpN) = 1 we have the norm relation
Norm e (%21, yme) = PuFYObO) (21, 2, m),
where P(X) = det(1 — X - Frob | Ty (145)(2)).
Proof. We first follow Proposition 2.2.1 to have

(1 AT @ AT, ) = (0= 1) () OO g ) - 2020 @

+- 02020 @) (50, 0

Combining the new £§ (this maps the second factor [[] to [I], and leads to counterpart &g 4, y,m of the
classes R ¢y, y,,m Of Definition 2.1.2) and the diagram (2.15), one obtains

K[mkt -
Norm I (5 g g me) = (£ — 1) (aem -

# 0= 02O 10 ) )

This formula should be treated as a replacement for Proposition 2.2.1.

Then we remove the extra factor (£ —1) as in §2.2.1 to obtain classes ®k ¢y, p,,m, modify the remaining
factor through multiplication by —y1 ¢S (1)([(] x [I]), and apply Lemmas 9.6.1 and 9.6.3 in [Rub00] to obtain
the existence of classes ©zy .y, ws,m With 274, o1 = Ky, ,0.,1 and the desired norm relations. g



22 F.CASTELLA AND K.T.DO

2.4. Construction for general weights and wild norm relations. We now extend the constructions
of the preceding subsections to f € Sa,(I'o(NNf)) of any weight 2r > 2 and more general Hecke characters,
assuming in addition that

(ord) f is ordinary at ‘B,

which we shall often refer to as f being ‘p-ordinary’; and prove that the resulting classes also satisfy the
wild norm relations, i.e., they are universal norms in the anticyclotomic Z,-extension of K.

2.4.1. CM Hida families. We shall replace the weight 2 theta series 0y, , 0y, by p-adic families, so we begin
by recalling the explicit construction of certain CM Hida families, following the exposition in [Hsi21, §8.1].

Let T's = Gal(K/K) be the Galois group of the Z%—extension of K, which under our hypotheses can
be written as

oo ~ Ty x Tpee,
with I'yee = Gal(Kj~ /K) (resp. g = Gal(Kj~/K)) representing the Galois group of the unique Z,-
extension of K inside K., unramified outside p (resp. p). Recall that for every ideal ¢ C Ok we denote by
K. the ray class field of K of conductor ¢ (so in particular K« is the maximal Z,-extension of K inside
Kye). For q € {p,p}, denote by Arty : K — G3P the restriction of the Artin reciprocity map to Ky,
with geometric normalisations. With the identification Z ~ (’)Ix(q, the map Art, induces an isomorphism
14pZ, = Iy (note that this uses our hypothesis (cn)). Let u = 1+p and let 74 € Iy be the topological
generator v = Artq(u)|K:m with cype™! = ~5, where Gal(K/Q) = {1,c}.

For each variable Z, let Uy : T'o, — Z,[Z]* be the universal character given by

Vz(0) = (1+2)"),

where [(0) € Z,, is such that 0’|st = vé(g). Note that the specialisation 1y of ¥z to Z = u — 1 descends
to an isomorphism

'LZJO = \Ifu,1 : Fpoo l) 1 -|-pr
(namely, the inverse of the above isomorphism induced by Art,), and may be seen as the p-adic avatar of

a Hecke character — still denoted 1y — of K of infinity type (1,0) and conductor p.
For ¢ coprime to p, and for any finite order character £ : Gxg — O* of conductor dividing ¢ put

(2.16) 0s(2) (@) = Y &y (0a) V5" (0a)g"V /2 € O[Z][d],
(a,pc)=1

where o, € Gal(K (¢p>)/K) is the Artin symbol of a. With conventions as in §4.1.1 below (which differ
slightly from those in [Hsi21, §3.1]; our weight map is centered at weight 2 rather than 0), 8¢(Z)(q) is a Hida
family defined over O[Z] of tame level N q(¢)Dk and tame character (£ o ¥ )egw™", where ¥ : G?Qb —

G3P is the transfer map, ex is the quadratic character corresponding to K/Q, and w : (Z/pZ)* — Z) is
the Teichmiiller character.

2.4.2. The construction. Let £1,&5 be ray class characters of K of conductor prime-to-p with

(sd) XeXe = 1.
Let f be the Hida family passing through (the p-ordinary p-stabilisation of) f, and let

(g’ h’) = (051 (Zl)v 052 (ZQ))
be the CM Hida families attached to &; and &. The tame characters of (f, g, h) are given by

2r

(Xf7Xg7Xh) = (w _27X€16Kw_1aX§2€Kw_l)a

and so (sd) implies the self-duality condition in (sd-triple) below.
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Let A = Zy[1 + pZ,] and let & : Z)Y — A* be a continuous character. Set T = Z x Z,, T = pZ, xZ,
and consider the A-modules

A ={f:T—AJ|f(1,2) € Cont(Zy,A) and f(a-t) =k(a)- f(t) forallae Z), t € T},
A, ={f:T = AJ f(pz,1) € Cont(Zy,A) and f(a-t) = (a) - f(t) for alla € Z), t € T'}

equipped with the my-adic topology, for mp the maximal ideal of A. We also consider
Dn = Homcont,A (Ana A)a D; = Homcont,A (A;a A)

equipped with the weak-* topology.
For each i € Z/(p — 1)Z, let k; : Z)} — A* be the character

2= w'(2)[(2)],

where (2) = zw™1(2) € 1 + pZ, and [] : 1 + pZ, — A* is the inclusion as group-like elements. Put A;, D;
to denote A, , D, and note that, by composing with the map px—2 : A* — Z; defined by u — uf~2, the
A-adic character ; interpolates the power maps z — 22 on Z) for k—2=1i (mod p—1). Replacing A
by ZX and k; by the character z — 2* for z € Z)* and i > 0, we define the Z,-modules A;, D; in the same
manner, see also [ACR23, §5.4].

To ease notation, set Y (m, p) = Y (1, Nm(p)) and denote by I'(m, p) the associated congruence subgroup.
As in [BSV22, Eq. (81) et seq.], the evaluation A, ®4 D,, — A gives rise to a A-module homomorphism

& HY(T'(m, p), A;) — Homp (H(T'(m, p), D;), A).

Similarly, the determinant map det : TxT' — Z defined by det((x1,x2), (y1,¥2)) = T1y2—2x2y1, composed
with r; : Z) — A gives rise to

G - Homp (HN(T'(m, p), D;), A) — H(T(m, p), D)) (—rs).
Then for any weight k > 2 with k — 2 =4 (mod p — 1) we have specialisation maps
pr—a s H'(D(m,p), Ai) = H& (Y (m,p)g, Lh—2),  pr—2 : H' (T(m,p), Dj) = H& (Y (m, p)gs Li—2)
fitting into the commutative diagram

Gio&;

Hl(F(m,p),Ai) Hl(F(m,p),Dg)(—m)

J{pkz lﬁkz

Hét(y(mvp)67 yk*Q) Hét(Y(m7p)67 gk*Q)(2 - k’),

where si_» is induced by (1.5).

Adopting the notations from [BSV22] (but working with the above modules of continuous functions
A;, A; and their duals D;, D;, rather than the analogous spaces of locally analytic functions considered in
op. cit., and letting A;, A; denote the (big) étale sheaves on Y (m, p) associated with A;, A; as in [ACR23,
§5.3,85.6]), we let

(2.17) k() € HY(Q, H'(T(m,p), Dy, _3)®0H' (I'(m, p), D_)@0 H' (T'(m, p), D_1)(2 — Kjgs))
be the image of the element

Det{fl , € HE(Y (m.p), A,y © A1 © A i(=gn))
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defined in [BSV22, §8.1] (which have specialised via pa,_o : A5, _5 — A} _,) under the composition
HY (Y (m,p), Ay 5 ® Ay ® A_1(—K}gp))
<5 HA (Y (m.p)®, Ay s KA BA L (—Kgp) © Zy(2))
s HY(Q, HE (Y (m, p)E, A s BA 1 RA )2+ Kgn))
5 HY(Q, H'(T(m, p), A, _5)@z, H(T(m, p), A_1)&z, H (L(m,p), A_1)(2 + K7 1))
LB, 5 (Q, H (D(m, p), Azy—2) 6z, H' (D(m, p), A1)z, H (T(m, p), A_1)(2 + Kgn)
2y HY(Q, HY (T (m, p), Dy, )&z, H' (L(m, p), D' 1)@z, H(T(m.,p), D)2 — K},4n)),

where sggn = s2,-2 Q@ ((L10&-1) ® ((—1 0&-1), Kigh Z) — A* is the square-root of the product of the
characters

(2.18) Ri(2) =20 k() = Ra(2),  kg(2) = Ka(2),
and n}gh : Gq — A is the composition of k}/;, with the p-adic cyclotomic character ecyc : Gq — Zy) .
Let I'(m,p) = T'(1, N(mp)). Similarly as in §2.2.1, replacing the second and third copies of Y (m,p) in

the above construction by the quotient Y (m,p)?/D,,, where D,, is the group of diamond operators as in
(2.9) acting diagonally on Y (m,p)?, we obtain the class

(219) &) € HY(Q,H'(D(m,p), Dyy_5)@z, H' (V(m,p), D’ 1)@z, p, ) H' ((m,p), D" 1)(2 — Kign))
determined by the relation ¢(m)Km, W = = (s, dm*)k%), and we put

(2.20) k2 = (T, 1, DY,

Proposition 2.4.1. For a prime number £ and a positive integer m with (mf,pN) =1 we have

(s PYjos PP K = (Fe) R0,

where
(1,3, k) *
(¢,1,1) (T, 1,1)
(1,¢,1) (1,7, 1)
(1,1,9) (1,1,Ty)
(1,£,0) K’}gh(é)mf(g) 1(Tl7171)
(6,1,0) | Kign(O)rg(0)~(1,T7,1)
(£,6,1) | Kign(O)rn(0)"1(1,1,T7)
and K¢, kg, kn 1 Gq — A* denote the composition of the characters (2.18) with ecyc. If we also have that
(¢,m) =1 then
(1,5, k) *
(1,1,1) (L+1)
(,0,0) | ({+ 1)K} n(0)

Proof. With m; replaced by pr; and the classes nﬁ}) replaced by k%), the stated relations with an extra
factor of ¢ — 1 follow immediately from equations (174) and (176) in [BSV22] (adding the prime £ to the

level, rather than p). The stated relations for k'Y then follow in the same way as in Proposition 2.2.4. [0

Assume that

(dist) &i(p) # &i(p) (modP),
for ¢ = 1,2, so the Galois representation associated to the CM family 8¢, (Z;) are p-distinguished. Note that
the specialisation of ¢, (Z;) to Z; = 0 gives the ordinary p-stabilisation (with U,-eigenvalue &' (p)) of
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the weight 2 theta series associated to &, ! which may be seen as the p-adic avatar of a Hecke character
of K of infinity type (—1,0).

Let f; € Ok with (p,f;) = 1 be a modulus for &, and put N¢, = Ng/q(fi)Dx. Then for every r > 1
and every integer m = mm coprime to p and divisible only by primes split in K, we have Hecke algebra
homomorphisms

(221) ¢f1mpT : T(l, Nglmpr)/ — O[Hflmpr]; ¢f2ﬁpv~ . T(I,Ngzmp’")/ — O[Hhﬁpw}
associated to &1y L &1 ! respectively, and by Theorem 1.3.3 these induce isomorphisms
Vismpr + Ha (Vi (Neymp") g, 2, (1)) @1z, OLHY,

f mp” ] = IndK(flmp ™) (5;11/}0)
Viympr © Hg(Y1(Ne,;mp" ), Zp(1)) @z, O[H,

2 mw] = IndK(fzmp ) O(&; "bo)

satisfying the natural compatibility as r varies. On the other hand, as explained in [ACR23, §5.6] we have
G q-module isomorphisms

(2.22) H'(T(1, Ne,m(p)), Dj(1)) N%L & (Y1 (Ne;mp")g, Zp(1)),

where ¢; = p%l D ae(Z/pZ)x w7 (a)[a] is the projector onto the w’-isotypic component of Z,[Z]. There-
fore, combining (2.22) with the inverse limit I&n V5,mpr and using the decompositions qe o~ H(p) x Ty

fimpee —
and Hf( me ~ H(p) x I'y, we obtain the Gq-equivariant isomorphisms

Vhmpee + HY(D(1, Ne,m(p)), D, (1)) &z, O[H), ] = Ind%hm)Ap(g;wo),
Viompoe * Hl(r(lvNEQm(p))VD (1))®Z O[[Hf mpm]] —> Ind (52 ’(/}0)

where Ay = O[I'y] with the G g-action given by the tautological character GK — Tpoo = A}
(2) ;

Continuing with the construction in this section, as in §2.1, the maps used to arrive at Ky, in (2.20) are
compatible under correspondences. Therefore, after tensoring with O[H f(p%pr] and O[H f(p %p ] via @5, mpr
and ¢j,mpr, respectively, and letting r — oo, the same construction gives rise to a class

K € HY(Q, H'(T(1, N(p)), Db, _y)&0(H" (T (m,p), D_,)&z, O[H ), ])

®o(p,,)(H (T(m,p), D’ ,)®z

(2.23)

[[ fzmpwﬂ)( K?gh))'

Now let (f, g ) be a triple of level-N test vectors for (f, g, k). Then we obtain a Gq-equivariant map
(2.24) @y HY(T(1,N(p)), Dy, (1))[f] = T§ .

Composing with the isomorphisms (2.23) and the natural projections H (p ) - HP H f(f 31 — HF (?) we also
obtain the Gq-equivariant maps

@ 25) Wg:Hl(F(m,p),'D 1(1 ))®Z O[[HflmpOO]] _>Ind O [ mp][[ F‘]]
wp, + HY(D(m, p), D1 (1)) 6z, O[H{ % ] = Ind RO, 1, [HL][T].

Taking the image of '3 under the natural maps induced by (2.24) and (2.25) we thus obtain
4 S S *
K2 enm € H(Q. T} ©0(dRO 1, [HNID )0 (ARO 1, [HPIIT) (-1 - K7gn)).

using that by (sd) the above ®z_ p,,) can be replaced by ®Zp.
Next, we note that, with the identifications A, = O[Z1], A, = O[Z;] defined by our choice of topological
generator v, € I'y, we have the following equalities as G'x-representations

Oéflwo [Tp] = §1_1¢0\I/ZI, Og;%po [[Fp] = 52_11/)0‘1’22,
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where the terms on the right-hand side of these isomorphisms denote the free O[Z;]-module of rank one
with G i-action via 5_17,/)0\112 ; and the character —1 — K%y, (written additively as in [BSV22, §8.1]) is the

same as .7 (Vg 1\11_1/ 2 _1/ 2 o ¥). Thus, we may equivalently write

(2.26)
K o € HY(Q,TY (1-1) @0 (ndQe;  goW 7, [HY &0 (IndRe; oW1, [HD o (v 052w,

which applying the diagonal map €a in (2.7) gives rise to the class

cyc (

1/2 4//))’

2

@21) K0 e HY(Q.TY (1 - r)dondQe e vl ol 2wl O 2 Hm] @),

where U5, : ', — O[Z;]* denotes the character given by
Vg (o) = (1+ 2)",
with (o) € Z, determined by U|K§ = Wé(a)
2.4.3. Anticyclotomic Iwasawa cohomology classes. The action of the complex conjugation ¢ € Gal(K/Q)
(or more precisely, any lift of ¢ to Gal(K,/K)) on ', yields the subgroup decomposition
Py =T+ xI,

with I'~ representing the Galois group of the anticyclotomic Z,-extension K /K. We can then identify

I'yo = I'” by mapping the topological generator 7, to 71/2 1/2 =:v_ € I'". Puting V; := (1+Zl)1/2 —

we have O['"] 2 O[V4]. The character
— 1-c)/2
Ui =092 T = o]

factors through I'~ and is identified with the tautological character '™ — O[['~]*. Thus setting Z5 =0

in (2.27), by Shapiro’s lemma the class ”&?%l,gz,m finally gives rise to

(2.28) K)o € H (K[mp™], TY (1 —r) @ &7 ¢ 108 7°),

where H} (K[mp>],T) denotes the limit Hm H'(K[mp*],T) with respect to corestriction. Thus, we
arrive at the following key result.

Theorem 2.4.2. Let f € Sy, (To(Ny)) be a p-ordinary newform of weight 2r > 2, let K be an imaginary
quadratic field satisfying (spl) and (cn), let &1,& be ray class characters of K satisfying (sd) and (dist)
with moduli f1,f2 C Ok, and suppose (p, N¢fif2) = 1. Let ¢ : '~ — O be the p-adic avatar of an anticy-
clotomic Hecke character of K of infinity type (—j,j) with j € Z, and consider the G -representations

Treeop =Tf (1 =) @& 07 Treese =T/ (1—r) @& 167"

Let m = mm run over the squarefree integers divisible only by primes split in K and coprime to pN, where
N =1lem(Ny, Ng,, Ne,). Then there exists collections of Iwasawa cohomology classes

Zf ey e06m € Hiy (Kmp™), Tre60),  “Zper6.0m € Hiy (K[mp™], Tre,es0)

such that for every prime £ = Il split in K with ({,mpN) = 1 we have the norm relations

K[me
NormK{m]] (Z1.61,62.0,me) = Pi(Frobi)(z 1.6, 65,6,m),
where P(X) = det(1 — X - Froby | T} ¢,4(1)), and

K[m C Cc
NormK{ ]]< i 60,0,me) = 7 (Froby) (°zye, 63,6,m),

where PE(X) = det(1 — X - Froby| Tf,£1§g¢(1))'
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Proof. For ¢ = 1[18_1 (which factor through I'™ and corresponds to the p-adic avatar of a Hecke character
of K of infinity type (—1,1)), the construction of the classes zf ¢, ¢, 4,m satisfying the stated norm relations

follows from a direct adaptation of the proof of Theorem 2.2.6 applied to the classes &ﬂhgz’m of (2.28)

using Proposition 2.4.1; the construction of zf ¢, ¢, 4.m for general ¢ then following by twisting by ¢~ 4§ -1
using [Rub00, Thm. 6.3.5].

The construction of the ‘conjugate’ variant classes “zs¢, ¢,.6.m follows from an adaptation of the con-
struction described in Section 2.3. Indeed, replacing the homomorphism ¢s,mp- in (2.21) by

(;Smepr : T(L N&mpr)/ - O[HmePT]ﬂ
we arrive at the Gq-equivariant isomorphism
Viympoe * HI(F(LN&m(p))aD ( ®Z O[[Hf(p;poo E_) IndQ K (fam) (52 7/}0)
and in the same manner as above from the classes x'2) in (2.20) we obtain classes
(2.29)
R o € H(QTY (1-1) @ (dRe w00z, (HP )G (Ind e ol [HP) ® (4551052051 0 7).

Applying to these the ‘conjugate’ map £ in (2.14) we obtain

cpld —1¢— 1—c)/2 c—1)/2
KL eom € HYQTY (1 1) @0 Inder &0y 92w 2 [H{m] ),

which after setting Zs = 0 result in classes

C'{"’faflafmm € Hllw(K[mpoo]vT}/(l - T) ® 51_152_(:)
Applying the argument in the proof of Theorem 2.2.6 to these classes yields the construction of °zy ¢, ¢, ¢.m
for ¢ = 1, and the construction for general ¢ then follows again by twisting (by ¢!, in this case).

Remark 2.4.3. Denote by ho the weight 2 specialisation of h = 0¢,(Z>) obtained by setting Z, = 0, put
VE=TY (1 = 1)&o(IndRe; oW 2, ) o (Ind2e; Ho) @ (15 10,2 0 )
= (T7 (1 -r) @& 16 My 0y, %) @ (T7 (1 - 1) @ 716, ° 0y, )

and let m(f,g, lvzg) € H'(Q, V') be the projection associated to the level-N test vectors (f, h, lvzg) of the

corresponding specialisation of the (f, g, h)-isotypic component of the class n'srlL) in (2.17) for m = 1. Then,
writing

(2.30)

v v v

(2.31) K(f, G, ha) = (51(f, G, ha), k2(f, G, ha))
according to the decomposition
HYQ. V) = HY(Q, T (1 - )0t & W) & HY Q. TY (1 - r)@olnd 2€ 6 W)
= Hllw(K[poo]v Tfyglggwgfl) & Hllw(K[pooL Tf,ﬁlfg)
from (2.30) and Shapiro’s lemma, we see directly from the proof of Theorem 2.4.2 that

v

(232) ("il(f7g7;'/2) (JF h )) ( f517£2,¢8 e fo1’§2’1,1)

3. ANTICYCLOTOMIC EULER SYSTEMS

In this section we show that the systems of Iwasawa cohomology classes constructed in Theorem 2.4.2,
which form an anticyclotomic Euler systems in the sense of Jetchev—Nekovai—Skinner [JNS], land in certain
Selmer groups defined in the style of Greenberg. We then record the bounds on these Selmer groups that
follow by applying their machinery to our construction.
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3.1. Selmer groups. Let f € So,.(I'g(Ny)) be a p-ordinary newform of weight 2 > 2 with p { Ny, and K
be an imaginary quadratic field in which p = pp splits. Let x be an anticyclotomic Hecke character of K
of infinity type (—j,7), and consider the conjugate self-dual G i-representation

Vin =Vy/A-rex
Given a prime v | p of K and a G, -stable subspace Z,F (Vy.y) C Vi, weput Z, (Vi) = Vi / Fo (Vi)

Definition 3.1.1. Let L be a finite extension of K, and fix .# = { %, (Vyy) }u|p- The associated Greenberg
Selmer group Selgz (L, V5 ) is defined by

Hl(Lw’ Vﬁx) }

Sely(L, vaX) = ker{Hl(L, vaX) — H m
w F wHy ' X

where w runs over the finite primes of L, and the local conditions are given by
HY (L, Vi) ker{Hl(Lanf,x) - Hl(LLl;ran,x)} if w{p,
T Wker{ Y (L Vi) = H (L 7 (Vi )} w0,

Given any lattice T, C Vy,, we let HL (L, Ty,) be the inverse image of HY (Ly, Vy,) under the
natural map H'(Ly,, Tf,) = H'(Ly, V¢ ), and define Sel (L, Ty, ) in the same manner; and given any
Z,-extension Lo = J,, L, of L, we put

Sely(Loo, Tfyx) = m Selg(Ln, Tf»X)?

n

with limit with respect to corestriction, and also put Sel# (Lo, Vy,y) := Selz (Lo, Tty ) ®@2z, Qp (which is
independent of the chosen T ).

We shall be particularly interested in the following two instances of these definitions:

o The relazed-strict Selmer group Selyel st (L, V.5 ) obtained by taking

Vf~,X if v=np,
Z, ;_ (Vﬁx) = . _
0 if v=p.
e The ordinary Selmer group Selord,ora(L, Vy,y). Since f is p-ordinary, upon restriction to Gq, C Gq
the Galois representation va fits into a short exact sequence

0=V "=V =V =0
with va’i one-dimensional, and with the Gq,-action on va’_ being unramified (see §1.2.2). Then
Selord,ord (L, Vi) is the Greenberg Selmer group defined by
(3.1) FFViy) =V =V 1 -k/2)@x!
for all v | p.
Following [BK90], we also define the Bloch-Kato Selmer group Selgk (L, V¥ ) by

H(Lw, Vi)
H}(Lwa Vﬁx) }’

where as before w runs over the finite primes of L, and the local conditions are given by
ker{H'(Lq, Vi) = H* (LY, Vi) } if wtp,
ker{Hl(Lw, Vi) = HY Ly, Vi ® Bcris)} if w| p,

Selgk (L, Vi.y) i= ker{Hl(L, Vi) = [ 1

Hj(Lu, Vi) = {

with Bis being Fontaine’s crystalline period ring. The local conditions H} (L, Tfy) C HY (Ly, T,) are
then defined by propagation.

For our later convenience, we now recall the well-known relation between these different Selmer groups.
Here we shall adopt the convention that the p-adic cyclotomic character has Hodge—Tate weight —1. Thus,
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since x has infinity type (—j,7) (see §1.3.1 for our convention regarding infinity types), the p-adic avatar
of x has Hodge—Tate weight j at p and —j at p. Since it will suffice for our applications, we suppose j > 0.
Lemma 3.1.2. Suppose f has weight 2r > 2. Then for any finite extension L of K we have
Selrelstr (L, Viy)  if g >,

Selord,ord (L, Viy) 0 <5 <.

Proof. Combining the results of [Nek00, (3.1)-(3.2)] and [F1a90, Lem. 2, p. 125], for every prime w | v | p
of L/K/Q we have

SelBK(L, Vf,X) = {

Hj(Lu, Vi) = i { H' (Lu, Fily(Vy.x)) = H' (Lu, Vi)
where Fili(nyx) C Vi, is a Gk, -stable subspace (assuming it exists) such that the Hodge-Tate weights
of Fill (V}.,) (resp. Vi, /Fily(Vy,)) are all < 0 (resp. > 0).
Now, the Hodge-Tate weights of Vf—i_x and Vi = Vix / fox at the primes of K above p are given by:

+ p—
fo fo
HT weight at p | —j—7 | =g —1+7r

HT weight at p | j—7 | j—147

and so we find Fily(Vy) = Vy,, and Fil}(Vy,,) = 0 when j > r, and Fil, (V,,) = Filg(Vy) = V/, when
0 < j < r, yielding the equalities in the lemma. a

For Ay, :=Homgz_ (T}, ttp=), and a choice of Galois stable subspaces .# = { %, (V} ) }y|p, We define
the associated dual Selmer group Selg-(L, Ay ) by

Hl(Lw’ Aﬁx)
1'* ) )

Sel g« (L, AﬁX) = ker{Hl(L,AﬁX) — H H (L Af
w F wy £2f,X

where HY. (L, Ay, is the orthogonal complement of H% (L., T} ) under local Tate duality
Hl(LwaTﬁx) X Hl(va Afvx) - Q;D/ZP'

In particular, we find that:

e The dual Selmer group of Seleistr(L, Ty, ) consists of classes that are unramified outside p and
have the strict (resp. relaxed) condition at the primes w|p (resp. w|p); we shall denote this by
Selstr,rel(L; Af,x)~

o The dual Selmer group of Seloyd,orda(L, T,y) consists of classes that are unramified outside p, and
land in the image of the natural map

Hl(Lw,y;_(AﬂX)) — Hl(Lw?Afo)7 yz;i_(Af,X) = HomZp(yv_(Tf,X)a:up"o)?
for w | v | p; we shall denote this by Selord,ord (L, Af,y)-

3.2. Local conditions. We now determine the Selmer groups where the classes z ¢, ¢,,¢,m and “zs ¢, ¢,.6.m
of Theorem 2.4.2 live.

Theorem 3.2.1. For any &1,&2, ¢, and m as in Theorem 2.4.2, we have the inclusion
Zf.6162,0,m € Selrelstr (K [mp™], T e, 650);
Z161.60.0,m € Selord.ord (K[mp™], Ty e e50)-

Proof. With notations as in the proof of Theorem 2.4.2; it suffices to check the result for Ziel oS im
and “zf ¢, ¢,,1,m; the result for arbitrary ¢ then follows by twisting.

We begin by explaining the case m = 1. Letting V! and n(f, g, ;Lg) € H'(Q, V') be as in Remark 2.4.3,
by (2.32) we need to show the inclusions

(32)  ki(f.g,h2) € Selrelstr (K[p™), Ty ¢, eye—1) ka(f, 8, ha) € Selora.ora (K [p™], Tr.e,e,)-
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It follows from [BSV22, Cor. 8.2] that the class m(f, g, 712) lands in the balanced Selmer group Selbal(Q, v
of Definition 4.2.2 below. Restricted to Gk, the Gq-representation V! decomposes as

(3.3) Vg, = (TY (1 —7r) @& 0y W) @ (TY (1 —r) @ €165, ©),

where Vi = (14 Z1)/? — 1, and from we readily find that the local condition Z *(VT) at p cutting out
the balanced Selmer group corresponds to

TP Ve ) = (TY (1 - ) @ & b0 ) @ (T (1 — 1) @ &6 °0°),

3.4
G e, = (o) & (TY (1 - 1) @ &€ o010,

showing that the classes in (3.2) satisfy the right local conditions at the primes above p.
For the finite primes w t p, we can give an argument that applies to all m. Since Vf €1Eaps! is conjugate
self-dual and pure of weight —1, we see that

HO(K[mps]w,V

Fegavet) = HA(K[mp®lu, V,

reeans) =0
for all s > 0, and therefore H'(K[mp*],, Vi 5152%71) = 0 by Tate’s local Euler characteristic formula.

This shows that H'(K[mp®],, Ty 5152%71) is torsion, and as a result the inclusion
ol
resw(Zy g, 65,51 m) € H HF(K[mp®lu, Ty e ¢, pe-1)
S

follows automatically. A similar argument shows that the classes °zf¢, ¢, m are unramified at the primes
outside p, thereby concluding the proof of the inclusions (3.2) and hence the result for m = 1.
It remains to show that for general m, the classes in the statement satisfy the claimed local condition

at the primes above p. Specialising the class ngflgl €y.m 11 (2.26) to Zy = 0, it suffices to show the result for
m = 1 with & replaced by &1 and & replaced by &7’, where characters 7 : H,Sf’) = fpoe, 1) Hg) — fpoo
have inverse central characters. We obtain classes k¢ 5. ¢on/,m € H 1(Q,V7Tm,), where

Vi = TY (1 - ) © (IndRe ol z,) @ (Ind e o) © (v 10,7 0 9),

.1

landing in Sel”*(Q, V:rm,) as a consequence of [BSV22, Cor. 8.2]. Since the map & in (2.7) has the effect
of projecting onto the first direct summand in the decomposition

(3.5) VI lee = (TY (1—1) @ &7 v~ 03,%) & (T (1 — 1) ® &6 0 ()03, ),

from the description of ﬁ'}’al
the inclusions

(Vl;m,k;K) and ﬂgal(V:‘M/bK} analogous to (3.4), and letting  and 7’ vary,

HE (KImp™>l,, T o if w | p,
resw(zf§ £re ! ) € 1 (K [mp™] fE1€29 1) |Ij
$1,82,%g {O} lfU}|p

follow, concluding the proof of the first inclusion in the theorem. Finally, the inclusions
TeSy (czf1§1$£27m) € HIIW(K[mpOO]v y@j (waflﬁz))

for all w | p can be shown in the same manner, now specialising the class C&Ef% gm0 (2:29) t0 Z2 =0

and characters v, v’ : H,Ef’ ) tpoe With inverse central characters, and using the fact that the map £% in
(2.14) has the effect of projecting onto the second direct summand in the decomposition (3.5). (]

3.3. Applying the general machinery. In this section we give some direct arithmetic applications that
follow by applying to the classes of Theorem 2.4.2 the general Euler system machinery of Jetchev—Nekovar—
Skinner [JNS]. Later in the paper, by exploiting the relation between the bottom class of our Euler systems
and special values of complex and p-adic L-functions, we shall deduce from these results applications to
the Bloch—Kato conjecture and the anticyclotomic Iwasawa main conjecture.
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For &1,&9, ¢ and m as in Theorem 2.4.2, denote by

21,61,62,0,m € Selrelsr (K [m], Tre,650),
21.61.62.0.m € Selora.ora(K[m], Ty e,¢50),
the image of zf ¢, ¢,.6,m> “Zf¢, €5,6,m under the projections
Selvel,str (K [mp™], Tre1606) = Selrerser (K [m], T e1600),
Selord,ord (K [mp™], Tf,€155¢) - Selord,ord(K[m]’ fo€1£§¢)7

respectively, and put

Zf.61,62,0 7= Zf.61,62,0,1 € Selrelste (K, Trg1650)
C2f61.60,0 = 2160 60,001 € Selord,ora (K, T g1656)
(recall that we assume (cn), so K[1] = K).

3.3.1. Rank one results.
Theorem 3.3.1. Let the hypotheses be as in Theorem 2.4.2. Assume also that f is not of CM-type. Then
the following hold:

(I) If zf.¢, 5,6 is non-torsion, then Selielser(K, Ve e,0) is one-dimensional.

(IT) If ©zpe, 5.9 is mon-torsion, then Selord ord (K, Vi g, ece) is one-dimensional.

Proof. By Theorem 2.4.2 and Theorem 3.2.1, the system of classes
(3'6) {wafl’Ez’(b,m € Selrelﬁstr(K[m]ﬂ Tf,§1€2¢)}m

forms an anticyclotomic Euler system in the sense of Jetchev—Nekovai—Skinner [JNS] for the relaxed-strict
Greenberg Selmer group. Hence from their general results' the one-dimensionality of Selrel str (K, Vig00)
is implied by the nonvanishing of zf¢, ¢, 6 € Selrerser (K, V¢ ¢,6) provided the G g-representation V' :=
V1604 satisfies the following hypotheses:

(i) V is absolutely irreducible;
(ii) There is an element 0 € G fixing K (pe, (O5)/P7) such that V/(c — 1)V is one-dimensional;
(iii) There is an element v € G fixing K (upe, (O5)Y/?7) such that V=1 = 0.
Since f is not of CM-type, hypotheses (i)—(iii) follow easily from Momose’s big image results [Mom81]
as in [LLZ15, Prop. 7.1.4], whence part (I) of the theorem holds; the proof of part (II) is the same. a

3.3.2. Iwasawa-theoretic results. Recall that K denotes the anticyclotomic Z,-extension of K, and put
Ay = O[Gal(K /K)]. Let
Zf 61600 = B161 6200 € Selrel st (Koo, The1620),
21600 = “Br61 6000 € Selordord (Ko, T e e50)

be the bottom classes of the systems {zf ¢, ¢,.6.m}m and {°zs¢, ¢, ¢.m}m from Theorem 2.4.2, where the
inclusions follow from Theorem 3.2.1.

Notation 3.3.2. As in [LLZ15, §7.1], we shall say that f has big image if the image of Gq in Auto(T})

contains a conjugate of SLa(Z,,).

We also note that, by a theorem of Ribet [Rib85], if f is not of CM-type, then it has big image at 3 all
but finitely many primes B of L.
Put

Kstr el (Koos Afg16,0) = Homg, (hgl Selsir,rel (K, Ape1600), Qp/ Zp> ;
n
where K denotes the subextension of K of with [K; : K] = p", and likewise for Xord,ord (K5, Ay ¢,656)-

ISee also [ACR23, §8.1] for an exposition of the relevant results from [JNS], which at the time of writing is not publicly
available yet.
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The next result can be seen as a divisibility towards an anticyclotomic Iwasawa main conjecture ‘without
L-functions’.

Theorem 3.3.3. Let the hypotheses be as in Theorem 2.4.2, and assume in addition that f has big image.
Then the following hold:

(I) If zfe, .,6 is non-torsion, then X vel (K5, Af.ei6,0) and Selrerser (Ko, T e16.6) both have Ay -
rank one, and we have the divisibility

— Sel 1 K-.T : 2
CharA}} (XStrvrel(Koov Af7§1§2¢)t0rs) D charAR < rc/,\sir( 00 f7§1§z¢))
K %629
in Ay,
(1) If 26 6,0 is non-torsion, then Xowd.ord(Koo, Agagss) and Selorda,ord(Koo, Trgaege) both have Aje-
rank one, and we have the divisibility

Selord,ord (Ko_oa Tf;€1§§¢) > °

char, - (Xord ora(K5, A co)tors) O char, -

g Kordonal $:t36)ore) A < Ak 2 60,0
in Ayg.

Here, in both (I) and (II), the subscript tors denotes the Ay -torsion submodule.

Proof. By Theorem 2.4.2 and Theorem 3.2.1, the system of classes

(3.7) {25, 60.0.m € Seleelstr (K[mp™], Tre1600) ),

forms a Ay -adic anticyclotomic Euler system in the sense of Jetchev—Nekovai—Skinner for the relaxed-strict
Selmer group, and so by the general results of [JNS] (see [ACR23, §8.1] for a summary) the non-torsionness
of zy ¢, ¢, 4 implies the conclusions in part (I) of the theorem provided the Gg-module T' = Ty ¢, ¢, satisfies
the following hypotheses:
(i) T := T /BT is absolutely irreducible;
(ii) There is an element o € Gy fixing K (ppe, (O5)1/P7) such that T'/(c — 1)T is free of rank 1 over
0;
(iii) There is an element v € G fixing K (ppe, (O5)/?7) and acting as multiplication by a scalar
ay #1on T
but these are easily checked under our assumption that f has big image (see [LLZ15, Prop. 7.1.6]). This
shows part (I) of the theorem, and part (II) follows in the same manner. O
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Part 2. Applications
4. PRELIMINARIES

In this section, we briefly review the unbalanced triple product p-adic L-function constructed in [Hsi21]
and their associated Selmer groups. We also recall from [BSV22] the explicit reciprocity law for diagonal
classes.

4.1. Triple product p-adic L-function.

4.1.1. Hida families. Let I be a normal domain, finite flat over
A= O[[]' +pZPH7

where O is the ring of integers of a finite extension of Ly of Q,. (Here, as in §2, Lq denotes the completion
of a number field L at a prime 9 above p induced by our fixed embedding i, : Q < Q,,.) For an integer
N > 0 with p t N, and a Dirichlet character x : (Z/NpZ)* — O*, we denote by S°(N, x,I) C I[g] the
space of ordinary I-adic cusp forms of tame level N and branch character x as defined in [Hsi21, §3.1].

Denote by %ﬁ' C Spec ]I(Qp) the set of arithmetic points of I, consisting of the ring homomorphisms
Q:1— Qp such that Q|14pz, is given by z — 2Fe=2¢(z) for some kg € Zsy called the weight of Q
and e€g(z) € pp-. (Note that here we center the weight map at weight 2, rather than weight 0 as done in
loc. cit.). As in [Hsi21, §3.1], we say that f =", an(f)¢" € S°(N, x,I) is a primitive Hida family if for
every @ € %ﬁ" the specialisation fg gives the g-expansion of a ‘B-ordinary p-stabilised newform of weight
kg and tame conductor N. Attached to such f we let xgls be the set of ring homomorphisms @) as above
with kg € Z>; such that fg is the g-expansion of a classical modular form (thus X¢! contains %Er ).

For f a primitive Hida family of tame level N, we let

(4.1) pf: Gq — Autr(Vy) ~ GLy(I)

denote the associated Galois representation, which here we take to be the dual of that in [Hsi21, §3.2]; in
particular, the determinant of pg is x1-€cyc in the notations of loc. cit., where €.y, is the p-adic cyclotomic
character. A priori, py is just realised over in the fraction field Frac(I), but we shall always assume that its
associated residual representation py : Gq — GLa(kr), where k1 denotes the residue field of I, is absolutely
irreducible, in which case an integral model as in (4.1) can always be found.
Restricting to Gq,, the Galois representation Vy fits into a short exact sequence
0—>Vf+—>Vf+Vf*—>07

where the quotient V¢~ is free of rank one over I, with the Gq,-action given by the unramified character

sending an arithmetic Frobenius Frob,, ' to a,(f), see [Wilg8, Thm. 2.2.2].
Denote by T(N,I) the Hecke algebra acting on &,.5°(NV, x,I), with x running over the Dirichlet char-
acters modulo Np. Associated with f there is a I-algebra homomorphism

Ap : T(N,I) =T
factoring through a local component Ty,. Following [Hid88a], we define the congruence ideal C(f) of f by
C(f) == Ag(Annr,, (ker Ag)) C L.

If py is absolutely irreducible and p-distinguished, it follows from the results of [Wil95] and [Hid88a] that
C(f) is generated by a nonzero element 7"’ € I.

4.1.2. Triple products of Hida families. Let
(fvgah) € SO(Nf7Xf7Hf) X SO(N97X97]I£]) X SO(NhAth]Ih)
be a triple of primitive Hida families with

(sd-triple) XfXgXh = w?® for some a € Z,
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where w is the Teichmiiller character. Put
R = Hf®oﬂg®o]lh7
which is a finite extension of the three-variable Iwasawa algebra AQoA&OA.
Let %ji C SpecR(Q,,) be the weight space of R given by
X} = {Q = (Qo, Q1,Q2) € X, x X5 x X[° © ko, + ko, + ko, =0 (mod 2)}.
This can be written as the disjoint union X7, = Xb! L %{3 L X% LU XR | where
X ={Q e X}, « ko, + kg, + kg, > 2kg, for all i =0,1,2}
is the set of balanced weights, i.e. where each weight kg, is smaller than the sum of the other two, and
x7f3 = {QE x;; kg = kg, +kQ2}7
X% ={QeXx} : kg, > kg, +kq,},
X ={Qe X} : kg, > ko, + kg, }

are the sets of f-, g-, and h-unbalanced weights, respectively.

Let V = V;®0Vy®0Vh be the triple tensor product Galois representation attached to (f,g, h). Write
the determinant of V in the form det V = X2e.y. (note that this is possible by (sd-triple) and p > 2), and
put

(4.2) vi=vexl
which is a self-dual twist of V.

4.1.3. Unbalanced triple product p-adic L-function. Define the rank four Gq,-invariant subspace ﬁJ(VT)
of VI by

(4.3) FIV) =V @oVa@oVh @ X7,
and for any @ = (Qo, Q1,Q2) € %{z denote by ﬁlf (Vg) C Vg the corresponding specialisations.

For a rational prime /¢, let sg(VTQ) be the epsilon factor attached to the local representation VTQ\GQZ
(see [Tat79, p.21]), and assume that

(sgn) for some @ € :{fzv we have Eg(sz) = +1 for all prime factors £ of NyNyNj,.

As explained in [Hsi21, §1.2], it is known that condition (sgn) is independent of @, and it implies that the
sign in the functional equation for the triple product L-function (with center at s = 0)

LV, s)
is +1 (resp. —1) for all Q € X5 UX% UXR (resp. Q € X%).

Theorem 4.1.1. Let (f,g,h) be a triple of primitive Hida families satisfying conditions (sd-triple) and
(sgn). Assume in addition that

o gcd(Ny, Ny, Ny) is square-free;

e py is absolutely irreducible and p-distinguished;

and fir a generator ny"? of the congruence ideal of f. Then there exists a unique element
fpf(f7g7h) ER
such that for all Q = (Qo, Q1,Q2) € %{Z of weight (ko, k1, ko) with eg, = 1 we have

zf h 2*F 0 L(VTQ’O) E(FT (Vi 1 —1\2
(& (f.9.0)(Q) = vfg( )’W' (F ( Q))’qel;{m( +a )%
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where:

° FVZJ (0) = Fc(CQ)Fc(CQ—i— 2—ky — kg)Fc(CQ-f— 1-— kl)Fc(CQ-f— 1 — ko), with

09: (k0+k1 +k2 —2)/2
and I'c(s) = 2(2m)~°T'(s);
° Q-fQo 18 the canonical period

£l () X} (p)p*o—? X} (p)p*o—2
Q.fQU = (=2v 71)k0+1 ) 0conog = (1 - 2 )(1 -~ 2 ),
ano aQO aQO

with f5, € Sko(L'o(Ny)) the newform of conductor Ny associated with fq,, X' the prime-to-p part
of x¢, and o, the specialisation of a,(f) € H? at Qo;

o & (”’e(VJf )) is the modified p-Euler factor

| L(F{(V1).0) !

O FH V) LV (V.0 L(VE0)

and Yexe is an explicitly defined subset of the prime factors of NyNyNy,, [Hsi2l, p. 416].

Proof. This is Theorem A in [Hsi21], which in fact proves a more general interpolation formula. (I

Remark 4.1.2. The construction of the p-adic L-function fpf (f,g,h) is based on Hida’s p-adic Rankin—
Selberg method [Hid88b], and the proof of the above exact interpolation formula relies on a suitable choice
of test vectors (F*,g*, h*) for (f,g,h) of level N = lem(Ny, N,, N},). In general (without any additional
hypotheses on g¢), for any choice ( f,4,h) of level-N test vectors, Hida’s method produces an element

(4.4) LI (f,8,h) € Frac(ly)®ol,@0lh,
and by virtue of the proof of Jacquet’s conjecture by Harris-Kudla [HK91] (see also [DR14, Rem. 4.8]),
for any fixed Q € X%, if the central L-value L(VZ2 ,0) is nonzero, one can find ( f.4g, h) such that
— o
ZI(F.9.0)(Q,) #0.
In terms of (4.4), under the hypotheses on p¢ in Theorem 4.1.1, the p-adic L-function pr(f, g, h) is given
by 3" Zf (£*.% h).
4.2. Triple product Selmer groups. Let VI =V ® X~ be the self-dual twist of the Galois represen-
tation associated to a triple of primitive Hida families (f, g, h) satisfying (sd-triple).
Definition 4.2.1. Put
TPV = (Ve VS oVii+VieV,e Vi + VeV, oVh) ex !,
and define the balanced local condition Hi_(Q,, VT) by
HL1(Qp, V) i= im(HY(Q,, Z)* (V1)) = H'(Q,, VT)).
Asin (4.3), put 35[; (V) = (Vf+®Vg®Vh) ®@X ™!, and define the f-unbalanced local condition H}(Qp, V)
by
H}(Qp, VI) :=im(H'(Q,, # (V1) = H'(Q,, VT)).

It is easy to see that the maps appearing in these definitions are injective, and in the following we shall
use this to identify H}(Q,, V1) with H'(Q,,.Z,] (V1)) for ? € {bal, f}.
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Definition 4.2.2. Let 7 € {bal, f}, and define the Selmer group Sel?(Q,VT) by

Sel’(Q, VT) := ker{Hl(Q,VT) gp’w < [TH(Q), VT }
P v#£p

We call Selbal(Q,VT) (resp. Self(Q,VT)) the balanced (resp. f-unbalanced) Selmer group.

Let AT = Homz, (V1, iy ) and for ? € {bal, £} define Hi.(Q,, AT) C H!(Q,, AT) to be the orthogonal
complement of H}(Q,, VT) under the local Tate duality

Hl(vaVT) X Hl(vaAT) = Qp/Zyp.

We then define the balanced and f-unbalanced Selmer groups with coefficients in AT by

Hl Q ’ nr
Sel’(Q, AT := ker{Hl(Q,AT) T Qf; AT < [TH'(Q), AT) }
’ v#Ep

and let X7(Q,A') = Homzp(Sel7(Q, A'"),Q,/Z,) denote the Pontryagin dual of Sel’(Q, AT).

4.3. Explicit reciprocity law. We continue to denote by (f, g, h) a triple of primitive Hida families as
in §4.1.2 satisfying (sd-triple), and put N = lem(Ny, Ny, Ni,). Let

(4.5) k(f,g.h) € H(Q,VI(4))

be the big diagonal class constructed in [BSV22, §8.1], where VT(_#") denotes a free R-module isomorphic
to finitely many copies of VT,

Remark 4.3.1. By counstruction, k(f,g,h) is the same as the (f, g, h)-isotypic projection of the class
ki in (2.19) with m = 1.

The definition of the Selmer groups in §4.2 extends immediately to VT(.#"), and by Corollary 8.2 in
loc. cit. one knows that x(f, g, h) € Sel”™(Q, VI(.1)).
Put

Fo(VH) =VidoVieoVf o x~t c Vi

Then clearly .Z3(VT) € ZP*(VT), with quotient given by
(4.6) FENVH ) Z3VH) 2 VIt VIt e VI,
where

Vgh = V7®ov+®oV+ @Xx,
(4.7) th Vi®oV, oV @ X,

V9 =Vi@oV, @0V, ® X~ 1.
We similarly define the level-N version ﬁ;‘fal(VT)(J/), V“}h(JV), ete..

4.3.1. Three-variable reciprocity law. As explained in [BSV22, §7.3] (see also [DR22, §5.1]), for every choice
of level-N test vectors (f, g, h) for (f, g, h) one can deduce from results in [KLZ17] the construction of an
injective three-variable p-adic regulator map with pseudo-null cokernel

(4.8) Logl, o - H(Qp, V' (A) = O(F) ' Iy&ol@olh,
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where C(f) C Iy is the congruence ideal of f, characterised by the property that for all 3 € H'(Q,, Vf}h(JV )
and all points @ = (Qo, Q1,Q2) € in of weight (ko, k1, ko) with eg, =1 (¢ =0, 1,2) we have

-1
Logl, 1 (3)(Q = (0~ Dag, <1 _ W) (1 - %]ﬁ%/)@ )

eyt /) (30), 1 ®ws, @ w; if Q € xba!
(c@—Fko)! 08p\0Q Nfq, @ Yaa1 @ Yha, dr’ = R
(ko — cq —1)!- <exp;(3g)7nf% ® Wq, ® Wiy, >dR, it Q € x4,.

Here,
o cg = (ko + k1 + ko —2)/2 is as in Theorem 4.1.1;
e ag, denotes the specialisation of a,(f) at Qo and we put Sg, = X}(p)pko_laéi; and (ag,,B0,)
(resp. (ag,,Bq,)) are defined likewise with g (resp. h) in place of f;
e log, and exp;, are the Bloch-Kato logarithm and dual exponential maps as reviewed in [BSV22,
pp. 51-52];
N, (resp. wye, ,w;LQQ) is the differential attached to fo, (resp. go,,hq,) as in [BSV22, Eq. (30)]
(resp. [BSV22, Eq. (34)]); and
e (—,—)ar denotes the de Rham pairing of [BSV22, Eq. (32)].
Denote by res,(x(f,g,h))s the image of k(f, g, h) under natural maps

Sel™(Q, VI(A)) =5 HY(Qy, Zy* (VI (A))) = HY(Q,, Z) (VI(A) | F5(VI(A)))
— HY(Q,, VI*(A))

arising from the restriction at p and the projection onto the first direct summand in (4.6).

res;

(4.9)

Theorem 4.3.2. Let (f,g,h) be a triple of primitive Hida families satisfying (sd-triple). Then for every
triple (f, g, h) of level-N test vectors for (f,g,h) we have

f _ of(f 5 F
Log(f)gjl)(resp(/ﬁ(f,g, h))s) = gp (f,g,h),
where fpf(f,g,ﬁ) is as in (4.4).
Proof. This is Theorem A in [BSV22] (see also [DR22, Thm. 5.1]). |

Remark 4.3.3. In particular, if py is absolutely irreducible and p-distinguished, then Theorem 4.3.2 gives

cong f _ f
(410) nf LOg(f*’g*’h*)(reSP(ﬁ(fv97 h))f) - gp (fvga h)7

where fpf (f,g,h) is as in Theorem 4.1.1. For the proof of the arithmetic applications later in this paper,
in addition to (4.10) we shall use its counterpart in the g-unbalanced case.

5. DEFINITE CASE

In this section we deduce our applications to the Bloch-Kato conjecture and the Iwasawa main conjecture
for anticyclotomic twists of f/K in the case where e(f/K) = +1.

Throughout this section, we let f = Y7  a,q" € So,(o(Ny)), with p t Ny, be a p-ordinary newform
of weight 2r > 2 defined over O, and K be an imaginary quadratic field satisfying (spl) and (cn).

5.1. Anticyclotomic p-adic L-functions. Recall that I'" = Gal(K/K) denotes the Galois group of
the anticyclotomic Z,-extension of K, and y_ € I'” is a topological generator. Write

Ny =N*tN-
with NT (resp. N7) divisible only by primes which are split (resp. inert) in K, and fix an ideal M+ C O
with Og /Nt ~Z/N*Z.
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Theorem 5.1.1. Let xo be an O-valued ring class character of K of conductor cOk, and suppose:

(i) (pNy,cDg) =1,

(ii) N~ is the squarefree product of an odd number of primes.
Then there exists a unique element GED(f/K, Xo0)(W) € O[W] such that for every character ¢ of '™ of
infinity type (—7,7) with 0 < j < r and conductor p", we have

_ p(2r71)n 2L(f/Ka X0¢>77"

) U3/ D Xop(om+) €ps

(27'1')27n . Qf,N*

0, (f/K,x0)*(6(y-)—1) T(r+)T(r—3)-E(f, x00)

azn
where:
e a, € O% is the p-adic unit root of * — a,x + p*" !,
(1=, '™ "x00(p)) (1 — app™ ' x00(R)) if n=0,
o &(f,x00) = ’ g ,
1 if n >0,
o Oy - =27 ||f||1%0(Nf) '77;,}\/* is the Gross period of f (see [Hsi2l, p.524]),
o ug = |0xl|/2,
o om+ € L' is Artin symbol of NT,
o ¢, € {£1} is the local root number of f at p.
Proof. This is Theorem A in [CH18b] (as extended in [Hunl7, Thm. A] for ¢ > 1), extending and refining
a construction in [BD96] in weight 2. O

5.2. Factorisation of triple product p-adic L-functions. Let f € S°(Ny,w? ~2,1) be the primitive
Hida family specialising to the ordinary p-stabilisation of f at an arithmetic point Qg € %f' of weight 2r.
Let &1, &2 be ray class characters of K of conductors dividing the ideals {1, fo C Ok coprime to p satisfying
(sd), and let

(5.1) (9,h) = (0,(21), 0c,(22)) € O[Z1] 4] x O 22][d]

be the CM Hida families attached to &;,&5 as in (2.16). Then (f, g, h) satisfies conditions (sd-triple) and
(sgn). Assume also that

(irr-dist) py is absolutely irreducible and p-distinguished,

so the hypotheses in Theorem 4.1.1 are satisfied. The ensuing f-unbalanced triple product p-adic L-
function pr(f,g,h) is an element in R = [®pO[Z1]®00[Z] =~ [[Z1,Z,], and in the following we
let

(52) jpf(fvg7h) € O[[ZLZQH

denote its image under the natural map I[Z;, Z5] — O[Z;, Z2] defined by Qp. More generally (in partic-
ular, without assuming (irr-dist)), for any choice of level-N test vectors, we let

(5.3) ZJ(f,4,h) € Ly @0 O[ 21, Z]
be the image of (4.4) under the map induced by Q.
Proposition 5.2.1. Assume that N~ is the square-free product of an odd number of primes. Set
S;=uw?(1+2;) -1
fori=1,2, and
Wi =ut(1+8)Y2(1 + 8,)Y2% -1, Wy = (1+8)Y2(1 + S5)" 12— 1.
Then

LI (1.9,h)(51,52) = +w - OBP(f/K,6,6) (W) - OP (/K. £19) (W) - ;fT

where w is a unit in O[Z1, Z2] ®z, Qp.
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Proof. This is an immediate extension of Proposition 8.1 in [Hsi21], where the case &, = & ! is treated (and
where the weight map is centered at 0 rather than 2, accounting for the change of variables from Z; to S;).
The need to invert p in the above equality arises from the term quEm(l + ¢~ 1?2 in Theorem 4.1.1. [

5.3. Selmer group decompositions. Assume further that the characters & and &5 satisfy (dist), so the
associated big Galois representations Vg and V4 are such that

(5.4) Vo 2Ind (67 00 0z2,), Vi = Ind2(& WoVs,),

where ¥z, and 1o = ¥,,_1 are as in §2.4.1.
Recall from §1.2 that the p-adic Galois representation V' associated to f satisfies det(V}') = e2r-1 On

cyc
the other hand, det(Vy ® Vi) = Y3 ¥z, Uz, o #. Thus, writing VIQO for the specialization of VT to Qy we
find

(55) Vi, ~ T ® (IndRe ol z,) @ (nd@ey Mo ¥z,) @ S (s Gl e
~ (T (1 —r) @ IndZ (&6 M50y ) @ (TY (1 —r) @ Ind R (€116 °04,.9)),

where we put
(5.6) Vi=1+2)20+2)Y? —1=u 1+ W) -1,

(previously, in §2.4.3, we let Zo = 0 so Vi = (14 Z;)Y/? — 1) and Wi, W, are as in Proposition 5.2.1. In
particular, since (5.6) gives

(5.7) Uy = W0y S =y Wy
(see §2.4.1 for the second equality), we get
(5:8) H'(Q.VG,) = HY(K,TY (1 - r) @ &6 0 ©) @ HU (K, TY (1 - r) @ 6716, 00
by Shapiro’s lemma.
Proposition 5.3.1. Under (5.8), the balanced Selmer group Selbal(Q,VZ)O) decomposes as
Sel"™ (Q, Vi, ) ~ Selyer,str (K, T (1 — 1) ® &' €51 W1°) @ Selora,ora (K, T (1 — 1) @ & 1650 °),
and the f-unbalanced Selmer group Self(Q7 VZ)O) decomposes as
Self(Q, Vgo) ~ Selord,ord (K, T} (1 — 1) @ &7 16, W3%) @ Selord,ora (K, T (1 — 1) @ &6, W),
Proof. From (5.5) we see that the balanced local condition is given by
(59) Ty (Vh,) = (Tf (1 =) @716 M) @ (T (- r) @ 6716 0y)
@ (T7 (1 -r) @& W),
Put _
Vb, = ([0 - o6 g ) © (10 - 9 66 v),
so by (5.5) we have
1 Ty~ gl \Val
(5.10) H(Q,Vy,) ~H (K, Vg, ).
Then from (5.9) we obtain
FrIVE) = (TY (1 —r) @ &G ) @ (T (1 —1) @ &6 °030),
Fy(Vh,) = {0} ® (T (1= @676 0S),

which yields the claimed description of Selbal(Q,Vgo). Similarly, we find that the f-unbalanced local
condition is given by

FIVE) ~ (17 1 -r oG v o (T) 1 - @ g1 ),
FIVEH) = (TP 1 =m0 o (T (1 —r) @& 1600,
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from where the claimed description of Sel (Q, VIQ(,) follows. O

As a consequence, we also obtain the following decomposition for the Selmer groups with coefficients in
AIQO = Homg,, (VIQO7 fipe= ), mirroring in the case of Sel¥ (Q, ATQO) the factorisation of p-adic L-functions in
Proposition 5.2.1.

Corollary 5.3.2. The balanced Selmer group Selbal(Q,ATQO) decomposes as
Sel"™(Q, A, ) ~ Selyur,vet (K, Ap (1) @ E1&U5") @ Selora,ora (K, Af(r) @ E165U51),
where Ay(r) = Homg, (T (1 — 1), pip=); and the f-unbalanced Selmer group self(Q, ATQO) decomposes as
Self (Q, A}, ) ~ Selord,ord (K, Af (r) ® £16U5") & Seloraora (K, Ap(r) ® €55,
Proof. This is immediate from Proposition 5.3.1 and local Tate duality. ]
5.4. Explicit reciprocity law. Now, we put
Vi =V ®oyz,,2,) Ol 21, 221/ (Z2),
where we let ho be the weight 2 CM form obtained by specialising h = 0¢,(Z2) to Z, = 0, and let
(5.11) K(f,9,h2) € HY(Q,VT(A))

be the resulting 1-variable specialisation of the big diagonal class k(f, g, h) in (4.5). Likewise, we denote
by ZF(f, g, h2) the image of (5.2) in O[Zy, Z5]/(Z>) ~ O[Z1], and similarly for any choice of level-N test
vectors we let o

LI (F.9.h2) € Ly ®@0 O[Z1]
be the natural image of (5.3). Since we have the inclusion £(f, g, hy) € Sel”™(Q, VI(.#)) as a consequence
of [BSV22, Cor. 8.2], we can write

(512) '%(fvgahQ) = (K“l(f7gvh2)a"'€2(f7g7 h2))
according to the decomposition from Proposition 5.3.1; in particular, we have
(5.13) k1(f; 9, h2) € Selrelser (K, Tf (1 — 1) @ & 716 Wy S (A)).

Let :{g[[wll] be the set of ring homomorphisms Q € Spec(O[W1])(Q,) with Q(1+W;) = {ou’® for some
Cq € pp and jg € Z>g, and for any O[W;]-module M we let Mg denote the corresponding specialisation.
Write

T =TY )T,
and denote by p; : T (1-r) — va’7 (1 —r) the natural projection. Let c; = 1;""? € O be the congruence
number of f.

With a slight abuse, we shall refer to as a triple of ‘level-N’ test vectors for ( f , g, EQ) the triple obtained

by specialising level-N test vectors (f,§, h) for (f,g,h).

Theorem 5.4.1. For every triple (f,§, ha) of level-N test vectors for (f, g, hs) there is an injective O[wh]-
module homomorphism with pseudo-null cokernel

f . J7l V,— S P -1
Lng,(f,g,ﬁz) ‘H (Kpan (1-me& & \Ilwlc(f/‘/)) — Cy O[wi]
such that for all 3 € Hl(Kmva’*(l -7r) ®§f1§51\P%471°(JV)) and Q € %EHWI]] with 0 < jo < r we have

i _ \ o
Lng’(f,iz,ﬁz)(S)Q - e <eXpP(3Q)’77f QO wg, @ Wh2>dR’

where cq is an explicit nonzero constant, and Q" € Spec(O[Z1])(Q,,) is the weight 2j¢ specialisation given
by Q'(1+ 7)) = (équQ*? Moreover, we have the explicit reciprocity law

LOg;J:,(f",g,fzz) (pj7 (I'ESP(Hl(f, g, hZ))))(Wl) - jpf(fvvg7 712)(51)7
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where Sy =vw?(1+Zy) — 1= (1+W;)? —1.
Proof. In terms of (5.5), we find that
FyVH =TT 1 -n) @ G "Wy =T (1 - ) @ 671 ype.
Together with (5.9), this gives the decomposition
FENTFIV = (T) (1) 0 66 W)
& (T (1-r) @76 Wye) & (T (1 - 1) @& ),

with the terms in the direct sum corresponding to V?hz, V£§ , and Vg’” from (4.6), respectively, and where
Wy = (14 Z1)'/?2 — 1 is as in Proposition 5.2.1 (with Zy = 0).

Thus we find that under the first isomorphism of Proposition 5.3.1, the composite map in (4.9) corre-

sponds to the projection to Selyelser (K, T} (1 —7) ® §1_1€2_1\I/‘1,;1°) (the first factor in that decomposition)
composed with the natural map

Selrerser (K, TY (1 — 1) @ &7 165 1 01-0) 5 HY (K, TY (1 — 1) @ &7 65 ' 0-©)

2 _ e _
5 HY (K, T (1= 1) @676 ),
and so under the corresponding isomorphisms we have res, (k(f, g, h2))r = py (vesy(k1(f, g, h2))) in
H'(Qy, V™ () = H'(K,, TY ™ (1 - 1) © &6 Wi ().

!

Finally, the construction of Log is deduced from a specialisation of the 3-variable p-adic regulator

p.(f,g.h2)
map Log‘{ s in (4.8) by the same argument as in [ACR23, Prop. 7.3], and the stated explicit reciprocity
law then follows from Theorem 4.3.2. O

5.5. On the Bloch—Kato conjecture in rank 0. In this section we deduce our first applications to the
Bloch—Kato conjecture in analytic rank zero for the twisted Gi-representation

Viy = va(l -7 ® x L
Denote by K|[c] the ring class field of K of conductor ¢. If y is a Hecke character of conductor cOf, then
its p-adic avatar is a locally algebraic character of Gal(K[cp™]/K). The Galois group I'” = Gal(K /K)

of the anticyclotomic Z,-extension of K arises as the maximal Z,-free quotient of Gal(K[cp™]/K). Fix a
(non-canonical) splitting

(5.14) Gal(K[ep™]/K) =~ A; x '™,

where A is the torsion subgroup of Gal(K[cp>]/K). Then every character of A. can be viewed as the
p-adic avatar of a ring class character of K of conductor dividing cp®Og for sufficiently large s. If x is as
above, we then write x = x¢ - Xw according to the decomposition (5.14).

Theorem 5.5.1. Let f € S, (I'o(Ny)), with pt Ny, be a p-ordinary newform of weight 2r > 2, let K be
an imaginary quadratic field satisfying (spl) and (cn), and let x be an anticyclotomic Hecke character of
conductor cOk and infinity type (—j,7), j > 0. Assume that:

e N~ is a square-free product of an odd number of primes;
(pNy,cDk) = 1;

Xt has conductor prime-to-p;

py s absolutely irreducible and p-distinguihed;
p>2r—2;

f is not of CM-type.

Then
L(f/K,x,r) #0 = Selgk(K,Vyy) =0,
and hence the Bloch-Kato conjecture for Vi, holds in analytic rank zero.
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Proof. We begin by noting that for j > r the sign in the functional equation of L(f/K, X, s) is —1 (and so
L(f/K,x,r) = 0, in which case there is nothing to show), so without loss of generality below we assume
that 0 < 5 < r.

Write x: = a/a® with « a ray class character of K of conductor §f C Ok prime-to-p (as is possible by
e.g. [DR17, Lem. 6.9] or [Hid06b, Lem. 5.31] and our assumption on x:). For a prime ¢ # p split in K and
an auxiliary ring class character 8 of g-power conductor (both to be further specified below), we consider
the setting of §5.2 with the CM Hida families (g, h) = (0¢,(Z1),0¢,(Z2)) for the ray class characters

1= Ba, &=p""a""

Using &€ = x¢ and &1£5 = 52, when specialised to Zo = 0, the factorisation in Proposition 5.2.1 becomes

cong

L (f.9,h2)(81) = £w - 0P (F/ K, xa) (W) - OpP (F/ K, 57) (W) - ;f*

s

where S1 = u?(1+2;)—1, Wy = u(1+Z;)Y2 =1, Wo = (1+ Z)V/? -1, and w is a unit in O[Z1] ®z, Q,.
By [CH18b, Thm. D] we may take ¢ and 3 so that ©PP(f/K, 3%)(W2) is a unit in O[W5], and with such
a choice the explicit reciprocity law of Theorem 5.4.1 can be rewritten as

Logﬁ,(f*,g*,gg)(P}(resp(m(f,g, h2)))) (W) = £w' - OBP(f/K, v )(W1)

with w' a unit in O[W1] ®z, Q, and (f*,g*, ha) the triple of level-N test vectors from Theorem 4.1.1.
Denote by @ € xg[[Wl]] the specialisation Wi — (ou’/ — 1 (Cg € ppe) corresponding to X, in the sense
that
_ c—1 ) __ c—1lgc—1 )
Xw = lI’Wl |W1:4Qu-7—1 - 1/10 \IJVI |V1:gQu.7—1_1.
Then from the above together with Theorem 5.1.1 and Theorem 5.4.1 we find

L(f/K,x,1)#0 = O°(f/K,xt)(xw(y-) —1) #0

(5.15) i N
= p;(resy(rk1(f*, 9%, h3)q)) # 0,

where #1(f*,§*, h3) denotes the image of the class k1 (f, g, ho) in (5.13) under the projection
Selyetser (I, TY (1= 1) @ x; " WhS(A)) = Selyer e (B, TY (1 = 1) © x; 1 W)
= Selerstr (K, TY (1 — 1) @ x; "0y, ©)

associated to (f*,g*, h3).

As noted in Remark 2.4.3, the class k1 (f*, g*, h%) is the bottom class of the anticyclotomic Euler system
{Zf’gl’gz’wg—lym}m of Theorem 2.4.2 for Tf§1§2¢g:1 (and the given choice of levvel—N t(jst vectors). Therefore,
by construction, letting EWy, petya? (k1(f*,g*, h3)) denote the image of k1 (f*, g*, h3) under the ‘twisting’
map

Selrerser (K, T (1 — 1) @ x; "0g Wi %) = Selerstr (K, TY (1 = 1) @ x "0y €)

v v

induced by the change of variables V; — Célul_j(l + V1) — 1, it follows that twy, T (k1(f*,g*,h3))
is the bottom class of the twisted Euler system of Theorem 2.4.2

- 1. -1
(5.16) {Zrxm b = {26 eovgtm @ V5 Xu' b
for T e epg ® U5 Xa' = Trixe

Since the class nl(f*, g, 7L§)Q in (5.15) is the same as the image of the bottom class zy 1 of the system
(5.16) under natural map

Selrel,str(Kv T}/(]- - T) & X_l\Il\l/:C) = Selrel,str(Ko_oa Tf,x) — Selrel,str(Ka Tf,x)7
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from Theorem 3.3.1 we deduce that Sel,el s¢r (£, V5 5 ) is one-dimensional, spanned by 4 (f*, g, 7L§)Q Since
we have in fact shown that p (resy(r1( 9% 7L§)Q)) # 0, from the global duality exact sequence

ves, H' (Kp, Vi)
H;rd(Kpa nyx)
— Selrel,ord (K7 Vf,x)v — Selrel,str(Kv Vf,x)v — 0,

0— Selord,str (K7 Vf,x) — Selrel,str (K7 Vf,x)

we deduce that Selyel ora (K, Vy,y) is also one-dimensional and spanned by 1 ( f*, g, B;)Q (hence equal to
Selrel str (K, V5 ). Finally, from another global duality exact sequence
reSp H1<Kp’vf7x)

H(}rd (va vaX)

— Selord,ord(Ka Vﬂx)v — Selord,str<Ka Vﬁx)v — Oa

0— Selord,ord (K; Vf,x) — Selrel,ord(Ky Vf,x)

we deduce the vanishing of Selora,ord (K, V7, ); since by Lemma 3.1.2, for 0 < j < r the latter group agrees
with Selgk (K, V), this yields the result. O

5.6. On the Iwasawa main conjecture. Our next application is to a divisibility in the anticyclotomic
Iwasawa main conjecture for modular forms in the definite setting.
For any eigenform f of weight 2r > 2 and an anticyclotomic Hecke character y, put
Aj = Homg, (T}/(l -7 ® Xfl,ppoo),

and writing ¥ = X - Xw as in Theorem 5.5.1, let @ED(f/K, X) denote the image of the p-adic L-function
@E’D( f/K, xt) of Theorem 5.1.1 attached to the ring class character x; under the twisting homomorphism
twy, : O[W1] — O[W1] given by W1 = xuw(v-)(1 4+ W7) — 1.

Theorem 5.6.1. Let the hypotheses be as in Theorem 5.5.1, and assume in addition that f has big image.
Then Selord,ord (Koo, Ay, ) s cotorsion over Ay, and we have the divisibility

char,— (Selord,ord (K5os Af.x) ) D (057 (/K. X)?)

n AI_( ®Zp Qp'
Proof. Repeating the argument in the proof of Theorem 5.5.1, we arrive at the equality
(5.17) Log! . o ey (07 (resp (1 (£, 9, 12)))) (W) = 4w’ - OEP (£/K, x,) (W)

with w' a unit in O[W1] ®z, Qp. It follows from Vatsal’s result [Vat03, Thm. 1.1] (as extended in [CH18b,
Thm. C] and [Hun17, Thm. B] to higher weights) that the p-adic L-function ©PP(f/K, x¢)(W1) is nonzero.
Thus, letting

k1 (f*,%, h3) € Selyen s (K, TY (1= 1) @ x; g™ )
be as in the proof of Theorem 5.5.1, we conclude that
k1(f*, g%, ha) is non-torsion

from (5.17).
Now, as noted in the proof of Theorem 5.5.1, the twisted class twy, veIxa! (k1(f*, g*, h3%)) is the bottom

class of the Euler system {zy y m }m for Ty, constructed in Theorem 2.4.2. Hence from Theorem 3.3.3 we
deduce that Selyel str (K, T,y ) and Xgpr ret(K, Ay ) have both A -rank one, and we have the divisibility

Selrel,str(K7 Tf,X) ) ’
A;( . thl)w8—1X;1 ("il(f*7 g*’ hg))

(5.18) charA;( (Xstr’rel(K, Af,X)tors) D CharA;( (

in A%. Since from (5.17) we deduce an explicit reciprocity law relating

v

resp (twy, et o1 (R1(F%,9%,13))) = resy (twyy, o (ka(f*,9%,13)))
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to twy,, (O (f/K, xt)) = OP(f/K, x), the result now follows from (5.18) and global duality by the same
argument as in [BCK21, Thm. 5.1]. O

Remark 5.6.2. An upper bound divisibility in the anticyclotomic Iwasawa main conjecture for Vy , as in
Theorem 5.6.1 was first obtained by Bertolini-Darmon [BDO05] for finite order character x in weight 2 and
by Chida—Hsieh [CH15] in higher weights 2 < k < p—1 using Heegner cycles and level-raising congruences.
Our proof of Theorem 5.6.1 is completely different from theirs (instead, it is more in line with Kolyvagin’s
original arguments), and allows us to dispense with their ramification hypotheses on ;.

5.7. On the Bloch—Kato conjecture in rank 1. The arguments in the proof of Theorem 5.6.1 give the
following result towards the Bloch-Kato conjecture in rank 1.

Theorem 5.7.1. Let the hypotheses be as in Theorem 5.5.1. If j > r (which implies L(f/K,x,r) =0),
then

dimpzg, Selpk (K, Vi) > 1.

Moreover, there exists a class zf, € Selgk (K, V) such that
zfx 70 = dimg,, Selpk (K, Vy,) = 1.
Proof. The proof of Theorem 5.6.1 showed that the class
Zfy = twvl)%flml(,ﬁ(f*’g*, %)) € Selestr (Ko, Ty )

is non-torsion over Ay (note that f is not required to have big image for this). On the other hand, one
readily checks that the natural map

(519) Selrel,str(Ko_o7 Tf,x)/(’yf - 1)Selrel,str(Ko_o7 Tf,x) — Selrel,str(K7 Tf,x)

is injective. Thus we conclude that Selyel str (£, Tf,x) has positive O-rank, which together with Lemma 3.1.2
yields the first part of the theorem. Letting zf, € Selierstr(K, T'f5) be the image of zf , under (5.19), the
second claim follows from Theorem 3.3.1. O

Remark 5.7.2. From the Euler system of Beilinson—Flach elements constructed by Lei—Loefller—Zerbes
and Kings—Loeffler—Zerbes [LLZ14, KLZ17] attached to the Rankin—Selberg convolution of f and a suitable
CM form, one can produce a class BF ¢, € H' (K, V;, ). As shown in [LLZ15] and [BL18], this class extends
to a full Euler system for the G'x-representation Vy ,, , but not for the correct local conditions at p. Indeed,
with notations as in the proof of Theorem 5.5.1, it follows from the explicit reciprocity law of [KLZ17]
that, for j > r, the class BF, lands in Selyestr (K, Vi) = Selgi (K, Vi, ) precisely when

(5.20) 0, (f/ K, xt)(xw(y-) =1) =0

(see [Casl7, Thm. 2.4] and [BL18, Thm. 3.11] for a specialisation of the results of [KLZ17] to this case).
However, for j > r the character y,, is outside the range of interpolation of @ED(f/K7 Xt), and so the
vanishing (5.20) is not a consequence of L(f/K, x,r) = 0. As a result, Theorem 5.7.1 seems to fall outside
the scope of methods building on these classes. (On the other hand, Heegner cycles also seem to not be
enough, since N~ is assumed to have an odd number of prime factors, rending Heegner cycles not directly
accessible, and in this definite setting the level-raising techniques of Bertolini-Darmon [BD05] are only
known to yield results towards the Bloch-Kato conjecture in rank 0, see e.g. [LV10].)

6. INDEFINITE CASE

In this section we deduce our applications to the Bloch—Kato conjecture (in ranks 0 and 1) for anticy-
clotomic twists of f/K when e(f/K) = —1. Since the nonvanishing results we shall need from [Hsil4] are
currently only available in the literature under the classical Heegner hypothesis, in the following we shall
restrict to this case, but we note that with the required extension of [Hsil4] at hand (see [Burl7, Mag22]
for progress in this direction), our results directly extend to the general indefinite case.
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6.1. Anticyclotomic p-adic L-functions. Keeping the setting introduced in Section 5, we assume now
that K satisfies the classical Heegner hypothesis:
(Heeg) every prime £ | Ny splits in K,
and fix an ideal 9 C O with Ox /M~ Z/N;Z.

Let ©, and Qx be the CM periods attached to K as in [CH18a, §2.5], and put
AR = Az, B

where Z," is the completion of the ring of integers of the maximal unramified extension of Q.
Theorem 6.1.1. Let xo be an O-valued ring class character of K of conductor cOk with (pN¢,cDg) = 1.

Then there exists a unique element XPBDP(f/K, Xo0) € Zy'[W] ®z, O such that every character ¢ of T'~
of infinity type (—j,j) with j > r and conductor p™, we have
_ Q) T+ )G+ 1))

B 00 - D = o = et eelfxed) LUK xodr),

where
(1= apxod(®)p™" + x06(®)?p™")" ifn =0,
e(3, (xo9)p) 2 else,

with s(%, (X0®)p) the epsilon-factor in [CH18a, p.570] attached to the component of xo¢ at p. Moreover,
ZPPP(f/K, x0) is a nonzero element of A ™.

ep(fa XO¢) = {

Proof. This is a reformulation of results contained in [CH18a, §3]. In particular, since (Ny, D) =1 as a
consequence of (Heeg), the nonvanishing of .Z,*PF(f /K, xo) follows from [CH18a, Thm. 3.9]. O

Remark 6.1.2. The CM period Qi € C* in Theorem 6.1.1 agrees with that in [BDP13, (5.1.16)], but is
different from the period Q. defined in [dS87, p.66] and [HT93, (4.4b)]. In fact, one has

Qoo =27 - QK.
In terms of 2, the interpolation formula in Theorem 6.1.1 reads
Q7 T(r+)T(G+1—r)p(M!
:% ( ) ( ; ;jf(l ) '€p(f,X0¢)'L(f/K,X0¢,T).
Ql 4(2m)'-2/Dg

This is the form of the interpolation that we shall use later.

LN (f/K x0)* (6(r-) = 1)

6.2. Factorisation of triple product p-adic L-function. As in §5.2, we consider the triple (f,g,h),
with f € S°(Ny,w? =2 1) the Hida family specialising to f at an arithmetic point Qo € X~ of weight 2r,
and

(9,h) = (0,(21), 0c,(22)) € O[Z1] 4] x O 22][d]

the CM Hida families of §2.4.1 attached to the ray class characters &1, &, satisfying (sd), and also (dist).
The triple product p-adic L-function of interest in this section is the g-unbalanced p-adic L-function

(6.1) Z2(f,9,h) € R =1200[Z1]200[2Z:] ~1[Z1, Zs]

obtained from Theorem 4.1.1 with the roles of f and g reversed (note that the conditions in Theorem 4.1.1
in this setting are ensured by (dist) and our hypothesis on the conductor of £;). In the following we let

g}?(fvgah) € O[[ZlaZQ]]
be the image of £9(f, g, h) under the map I[Z1, Z5] — O[Z1, Z3] given by Qo : 1 — O.
P
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6.2.1. Anticyclotomic Katz p-adic L-function. Before we can state and prove the main result of this section,
we need to recall the interpolation property of the Katz p-adic L-functions [Kat78], following the exposition
in [dS87]. For any ideal ¢ C Ok coprime to p, we let Z(c) denote the ray class group of K of conductor
ep™ (so Z(c) ~ Gal(K pe /K)).

Theorem 6.2.1. There exists an element L5 € O[Z(¢)|®z,Zy" such that for every character £ of Z(c)
that is crystalline at both p and p, corresponding to a Hecke character of infinity type (k,j) with k > 0 and
7 <0, then & satisfies

atzg oy _ VD
e = T - (V5
where L¢(&, s) denotes the Hecke L-function of § with the Euler factors at the primes dividing ¢ removed.
Moreover, we have the functional equation

L (8) = Ly (€N,

where the equality is up to a p-adic unit.

) - (1 - £()) - Le(E0),

Proof. Our LE32 corresponds to the measure denoted i (cp®°) in [dS87, Thm. 11.4.14], and the functional

pc
equation is given in [dS87, Thm. I1.6.4] (which allows to extend the interpolation property from k > —j > 0
to the entire range in the statement). O

Let T'; be the maximal torsion-free subgroup of Z(c), and fix a (non-canonical) splitting
Z(c) ~ A x T,
with A, a finite group and I'c ~ Z2. For ¢’ D ¢ the natural projection Z(c) — Z(¢) takes A, to Ay,
inducing an isomorphism I'. = I'.. Thus in the following we shall identify I', with I' := ['(1), the Galois
group of the Zi—extension of K as introduced in §2.4.1.
Suppose 7 is a Hecke character of K of conductor dividing ¢p®°. Viewing 1 as a character on Z(c) ~

A, x T, we put 7 := n|a,, and denote by EE?Z’_ the image of L'E%tz under the composite map

O1Z(c)]®z,2)" — O] Rz, Zy" — A",

where the first arrow is the natural projection defined by #, and the second arrow is defined by ~ + ! ~¢

for v € T'oo. Put also 7~ := 7°7 L.
Lemma 6.2.2. Let € be a ray class character of K such that €~ has conductor ¢ prime-to-p. Assume that:
(i) ¢ is only divisible by primes that are split in K;
(ii) Ac has order prime-to-p;
(iii) £ |Gy, # 1 for all primes v | p in K;
(iv) & has order at least 3.
Then the congruence ideal of the CM Hida family 0¢(Z) in (2.16) is principal, generated by CE?_Z’*.

Proof. As explained in [ACR25, Prop. 4.6], this is a consequence of the proof of the anticyclotomic Iwasawa
main conjecture for Hecke characters by Hida—Tilouine [HT93, HT94] and Hida [Hid06a] (recall that here
we assume (cn), so the omitted term hg is a p-adic unit). (]

6.2.2. The factorisation result. We now fix our choice of generator of the congruence ideal of g = 6¢, (7).

Definition 6.2.3. For &; satisfying the conditions of Lemma 6.2.2 (in particular, note that (iii) is equiv-
alent to (dist)), put
g . K?:tL— . g fx wx L*x
2y (f.g.h) =L L0 (7,97 R,
where ( f*. g% FL*) is the triple of level-N test vectors from Theorem 4.1.1 (see also Remark 4.1.2), and let
Z2(f,g,h) denote its image under the map induced by Qo : I — O.
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Note that & can be replaced by a twist &; - ¢ o N for a Dirichlet character ¢ without changing 51— , and
thus in the following we may assume that &; satisfies the following minimality hypotheses:

(6.2) the conductor of &; is minimal among Dirichlet twists.

The following is an analogue of Proposition 5.2.1 in the indefinite setting. Note that a variant of this
result first appeared in the work of Darmon-Lauder—Rotger (see [DLR15, Thm. 3.9]), but the formulation
of their result is not well-suited for our Iwasawa-theoretic purposes in this paper.

Proposition 6.2.4. Assume that &; satisfies the conditions in Lemma 6.2.2. Set
S;=u?*(1+27;) -1
fori=1,2, and
Wi=ut1+8)20+8)Y2 -1, Wy=(1+8)Y2(1+8,) Y2 1.
Then
ZI(f,9,h)(S1,592) = w - ZPPP(f/K, &) (Wh) - LPPF (f /K, &€5)(W2),
where w is a unit in O[Z1, Zo] @z, Qp.

Proof. Let ki, ks be integers with k1 = ks (mod 2) and ky > ko + 27. Set S; = u* — 1 for i = 1,2, so the
corresponding specialisations of W; are given by

Wy = ulkith=2/2 _ 1 Wy =ulk1=k2)/2 _ 1
and denote by VTQ the specialisation of VT at Q = (Qo, S1,52). Putting
Ti=ut(1+8)-1=u(l+2Z) -1
for the ease of notation, we have
det(T}/ ® VQTl ® VhTZ) = Eg;c_l : (5152\I/T1 \Isz o V) = Eggc_l ! (\IIT1 \Isz o 4//)7
using that the central characters of &5 and &; are inverses of each other for the second equality, and so
Vi =T} @ (ndR¢ ' 0r,) © (dR&, ' O,) @ el (07,202 0 )
~ (TY (1 —r) @ IndRF& &1 00) @ (TY (1 - r) @ Ind R &5 °04°).
Thus we find that the completed L-value appearing in the interpolation formula of Theorem 4.1.1 is given
by

(6.3)

o (0. LV 0y < T £ = DBt oy DE(Agts - (gt +1)
Ve @ 24 . (2m)2k
X L(f/K, 5152\11%7117T) ! L(f/K7 5165\11(;{721’7“))
and similarly the modified Euler factor decomposes as
c— - -r Cc— oy — 2
EN(FIVE) = (1 - (66 V5 ) B + (GET5)(E) )

x (1 — ap(EESVE NP + (E6505 D (F) )%

Moreover, letting qu be the prime-to-p part of the nebentypus character of gr,, we have

(6.4)

(6.5)

Xg(p)p™ ! Xg(p)p* 2 gl gl —
1— g _ )(1_ g _ ) = (1 —¢¢ 1\111 C(p) 1—¢g¢ 1\:[/1 C(p)p 1 ’
( 51\1/;11 (p)Q é—lqj;ll (p)g ( 1 T ) ( 1 T )
and therefore the canonical period Qg,. in Theorem 4.1.1 (associated with the generator n; = 552?’_ of
51

C(g) from Lemma 6.2.2) is given by

g3, 12, i e
(6.6) Qgy, = (—2y/— D+l T (1 celyloc(p)) (1 - e Wh-¢(p)p ),

gr,
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where C' = Ngq(f1) Dk, and we note that we may ignore the term [] .5 (1 +q~1)? from Theorem 4.1.1,

since (up to a p-adic unit) it only contributes a fixed power of p (in particular, independent of k1, ko).
On the other hand, since g, has weight k1, from Hida’s formula for the adjoint L-value [HT93, Thm. 7.1]

(using that & satisfies the minimality condition (6.2)) and Dirichlet’s class number formula we obtain

D2 2mh
o 12 _ K K c—1gl-c
H9T1||Fo(0) =T(k1) - 92k1 rhitl wiv/Dr - L(&3 Yo, 1),

where wi = |OF|.
Note that L(£§™ W3¢, 1) = L(&§ ™ W5 N~ 0), and £§ 7' W °N~! has infinity type (k1,2—k1). Hence
E?ﬁz, where f denotes the conductor of f%_c,

and from the right above formula for L( ffl\IflT;C, 1) and Theorem 6.2.1 we obtain

QO 2k1—2
Katz(gf 1\11,}1 °N~ ) (Qp) .

for k1 > 2 this character lies in the range of interpolation of £

a2k1—2 . 93ki—3

\/Dikl-'rl
c—1lgl—c c—1yg1l—c —1 o |12 WK
(1 & ¥y ( )) (1 -& vy (P)p ) ) ||gT1||FU(C) ) E
Moreover, by the functional equation of Theorem 6.2.1 and the definition of n; we have the relation

hi
WK

(6.7)

(68) Katz(gf 1\:[!1 SN~ )

p n;Tl ’
where ~,, denotes equality up to a p-adic unit. Therefore, equations (6.7) and (6.8) imply that

0 )2k1—2 mkl-‘rl

195, 125 _ _
Q, (27)2k1—2

(6.9) (1= (R) (L= &5 (B)pT) ~p (

77ng

Hence, from (6.6) and (6.9) we arrive at

2k1—2 2k —2
(6.10) L (QP) G
Qng Qoo @kl +1
Finally, note that the characters ;&5 \I/%;ll and 5155‘1"‘;[/_21 in the right-hand side of (6.4) are both anticy-
clotomic, and of infinity type (—(k1+k2—2)/2, (k1 +k2—2)/2) and (—(k1 —k2)/2, (k1 —k2)/2), respectively,
and so for k1 > ko + 27 they are in the range of interpolation for .ZpBDP (f/K,&1&2) and XPBDP(f/IQ &1&5),
respectively. Thus substituting (6.4), (6.5), and (6.10) into the interpolation formula for ZJ(f,g,h) in
Theorem 4.1.1 and comparing with Theorem 6.1.1 we finally arrive at

Z2(f,9,h)*(S1,52) ~p Dk T XBDP(JC/K &16)* (W) 'ngDP(f/Ka&fg)Q(Wﬂ,

and this yields the proof of the result. O
6.3. Selmer group decomposition.
Proposition 6.3.1. Under the direct sum decomposition
HY(Q, V) ~ HY (K T (1 - ) @ &6 10y ) @ HU (K T (10— 1) @ 61716, W)
of (5.8), the balanced Selmer group Selbal(Q,VT ,) decomposes as
Sel"™ (Q, Vi, ) ~ Selyer,str (K, T (1 — 1) ® &7 €51 W11-°) @ Selora,ora (K, T (1 — 1) @ &5 1650 °);
and the g-unbalanced Selmer group Sel?(Q, VIQO) decomposes as

Sel?(Q, Vgo) ~ Selrer ser (K, Ty (1= 1) @ &7165 1 W15-%) @ Selyerser (K, T (1 — 1) ® €165 909,
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Proof. The result for Sel”™ (Q, VZ?O) is given in Proposition 5.3.1, so we focus on Sel?(Q, VZQO). Put
Vo, = (T (1 -1 @676 W) & (T/ (1 - 1) @ 676 T,
so by Shapiro’s lemma we have
HY(Q, V) ~ HY(K, V).
Putting T; = u(1 + Z;) — 1 as in the proof of Proposition 6.2.4, so (5.4) can be rewritten as
Vo =Ind@ (&' 0r,), Vi = IndR(& ' r,),
a direct computation shows that the g-unbalanced local condition is given by
_ _ —c g —1/25,—1/2
FE(Vh,) =T © & r, @ (&' Un, @6 °05,) @ byl (V) 05?0 )
=(TY(1—-r) @& & ) e (TY (1 - 1) @16 °00).
Therefore, we have
vi oy — v vi o)
Fy (VQO) - VQO’ Th (VQO) =0,
and this yields the stated decomposition for Sel?(Q, \g 0). O

Corollary 6.3.2. The balanced Selmer group Selbal(Q,Ago) decomposes as
Selbal(Qu Ago) ~ Selstr7rel(K7 Af (T) & §1€2\Ij;[/711) 5% Selord,ord(K7 Af (T) ® 5155‘1101/[/721)7
and the g-unbalanced Selmer group Sel?(Q, AZ?O) decomposes as
Selg(Q7 ATQO) = Selstr,rel(Ka Af (T) & 5152\11({;[;11) D Selstr,rel(Ky Af (T) 02y flggqj;{z,l)
Proof. As in Corollary 5.3.2, this is immediate from Proposition 6.3.1 and local Tate duality. (|
6.4. Explicit reciprocity law. As in §5.4, we put
Vi =V ®oyz1,2.) Ol 21, 221/ (Z2),

let hy be specialisation of h = 0¢,(Z3) of weight 2 given by Zs = 0, but now consider the second component
ka(f, g, he) of the specialised big diagonal class

'%(fvgth) = ("il(f7gvh2)"‘€2(f7g7 h2))

according to the decomposition of Selbal(Q,VT (A)) from Proposition 6.3.1; in particular, we have
(611) HQ(f,Q, h2) S Selord,ord(K; T}/(]- - T) X 51_152_C\1111/I;2C(</V))3
where Wy = (14 Z;)Y/2 — 1. o
Let xg[[Wzﬂ be the set of ring homomorphisms Q € Spec(O[W2])(Q,,) with Q(1+W>) = {qu’? for some
CQ € pp and jg € Z>g, and for any O[W,]-module M we let M denote the corresponding specialisation.

Theorem 6.4.1. For every triple (f,§, ha) of level-N test vectors for (f, g, hs) there is an injective O[Ws]-
module homomorphism with pseudo-null cokernel

Logg,( o HY (Kp, T} (1= 1) @ &7 160, C(A) — Clg) ' O[We]

such that for any 3 € Hl(Kﬁ,va’Jr(l - ® 5;152*”\1/;;;(%)) and Q € %J(SHWz]] of weight jg > r we have

g — . * o o o
Logy (7g.hn (3 =ce <epr(SQ)’“f @ ggr @ “’hz>dﬁ’

where cq is an explicit nonzero constant, and Q' € Spec(O[Z1])(Q,) is given by Q'(1 + Z1) = GLELS
Moreover, we have the explicit reciprocity law

Logg’(f? ’,;2)(1"9513(52“,97hz)))(W2) = g;?(fvgaBQ)(Sl)v

where S; = u?(1 + Z1) — 1 =u?(1 + Wy)? — 1.
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Proof. As shown in the proof of Theorem 5.4.1, we have
FEWVN/FHV) = (177 (1) 0 &1 W)
& (T 1-n @& & Uy e (T 1 - @& g Uy,)),

with the direct summands corresponding to V?M, V{L;:’ , and V£h2 from (4.6), respectively. As a result, the
analogue of the composite map (4.9) in the present g-unbalanced case:

Sel*™(Q, VI(A)) =2 B (Qy, Z, (VI(A))) = HN(Qy, F (VI (A)) [ FF(VI(A))
= H'(Qy, V3 ()

corresponds, under the isomorphism of Proposition 6.3.1, to the projection onto Selord,ord (£, va(l - ®

(6.12)

Y C\I/%,;z °(A)) (the second factor in that decomposition) composed with the restriction map
Selordord (K, TY (1 — 1) @ &5 165 CWi0(A) —2 H' (K, T) T (1 — 1) @ &6 ST .5 (A).

In particular, under the corresponding identifications the image res, (k(f, g, h2))g of £(f, g, h2) under (6.12)
is such that

resp(/{(ﬁg, h2))y = resﬁ(£2(f7g7h2))
in
HY(Qp, V" () ~ H' (K, T (1 =) @ 7165 W3 (A)).

On the other hand, the construction of Log? is deduced from a specialisation of the 3-variable p-

p.(f,9,h2)
adic regulator map Log’gfg k) in §4.3 by the same argument as in [ACR23, Prop. 7.3]), and the associated
explicit reciprocity law then follows from Theorem 4.3.2. (]

In particular, for the choice of level-IV test vectors from Theorem 4.1.1 we deduce the following.
Corollary 6.4.2. Assume that &1 satisfies the conditions in Lemma 6.2.2, and put
Si=w(l+2Z)-1, Wi=ul+Z)"" -1 Wy=(01+2)"-1
Then
ﬁﬁz—z’_ -Log;(f*’g*ﬁ;) (vess (r2(f, g, h2))) (Wa) = Z£2(f, g, ha)(S1)
= +w - LV (f/K, &&) (W) - LPPF (f/ K, 665) (W),
where ZJ(f, g, ha) is the specialisation of £J(f,g,h) in Definition 6.2.3 and w is a unit in O[Z1]| @z, Q.

Proof. The first equality is immediate from Lemma 6.2.2 and Theorem 6.4.1, and the second follows from
Proposition 6.2.4. O

6.5. On the Bloch—Kato conjecture in rank 0. As another application of the Euler system construc-
tion in this paper, we now deduce a result towards the Bloch-Kato conjecture for

Vix=V/(1-rex™
analogous to Theorem 5.5.1 but in the indefinite setting.

Theorem 6.5.1. Let f € S5,(I'o(Ny)), with p{ N¢, be a p-ordinary newform of weight 2r > 2, let K be
an imaginary quadratic field satisfying (spl) and (cn), and let x be an anticyclotomic Hecke character of
conductor cOg and infinity type (—j,7), 7 > 0. Assume that:

every prime £ | Ny splits in K ;

(pNy,cDg) =1;

Xt has conductor prime-to-p;

py is absolutely irreducible;
f is not of CM-type.
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Then
L(f/K,x,r) #0 = Selgk(K, V) =0,
and hence the Bloch—Kato conjecture for Vi, holds in analytic rank zero.
Proof. We argue similarly as in the proof of Theorem 5.5.1, with some modifications. By our assumption
on Ny, the sign in the functional equation of L(f/K, x,s) is —1 for 0 < j < r, so without loss of generality

we assume that j > r.
Write x; = a/a® for a ray class character a as in the proof of Theorem 5.5.1, but now put

(6.13) &1 = fPa, L= (B Ta"¢) = Ba,

with 8 an auxiliary ring class character of K of g-power conductor for a suitable prime ¢ # p split in K.
Consider the setting of §6.2 with the CM Hida families

(g, h) = (051 (Zl)a 052 (ZQ))
By [CH18b, Thm. C] we may take g and /3 so that prDp(f/K, (%)(W1) is a unit in Z; [Wh] ®z, O and &

satisfies the hypotheses of Lemma 6.2.2. With such a choice, using the equalities £1& = 42 and £1£5 = x4
the explicit reciprocity law of Corollary 6.4.2 becomes

(614) 'C’;(;t;’i ! Logg’(f*’g*ﬁ;) (resﬁ(HQ(fvgv h?))) (W2) = :l:wl : ngDP(f/K7 Xt)(WZ)a

where Wy = (1 + Z;)Y/? — 1 =V, with w’ is a unit in Z W] ®z,, Lep.
Denoting by @ € %Z[[Wzﬂ the specialisation Wy — (gu? — 1 ((g € pp=) such that

= U w,—coui—1
from (6.14), Theorem 6.1.1, and Theorem 6.4.1 we find

L(f/Kx,m)#0 = ZPPP(f/K xe)(xw(y-) = 1) #0
= resp(ra(f*. %)) # 0,
where ko (f*,§*, h3) denotes the image of the class ks (f, g, ho) in (6.11) under the projection
Selord,ord (K, TY (1 = 1) @ x; " Wiy (A ) = Selora,ora (K, TY (1= 1) @ x; ' 04)

(6.15)

associated to (f*,g*, h3).
As noted in Remark 2.4.3, the class ko f *g* h*) is the bottom class of the anticyclotomic Euler system
{zy, 51,52’m}m of Theorem 2.4.2 for Ty ¢ ¢c = Tf v. (and the given choice of test vectors). Therefore, letting

tw ;1(/<o2(f*,_¢j* h*)) denote the image of ko (f* g* h*) under the ‘twisting” map
Selord,ora (K, T (1 = 1) ® x; " Wi12%) = Selord,ora (K, T) (1 — 1) @ x ' 0}5°)

given by the change of variables Wy — Célu_j(l + Wy) — 1, it follows that tWXEI(KJQ(fV g*,h3)) is the
bottom class of the Euler system

(6.16) {2fxm ) = { Br.6060.m @ Xa' |0

of Theorem 2.4.2 for Ty e ec @ X, = Tf -

Since by construction the class ro(f*, §*, h2)Q in (6.15) agrees with the image of the bottom class °z; , 1
of the system (6.16) under natural map

Selord70rd<Ka T}/(l - T) & X_l‘ll%/[;zc) = Selord,ord(Ko_oy Tf,)() — Selord,ord(K7 Tf,x)a

from Theorem 3.3.1 we deduce that Selorq,ord (K, Vy,y) is one-dimensional, spanned by ko f*,g*,ﬁg)Q
Since we have in fact shown that resg (ko *.9%, 7L§)Q) # 0, the vanishing of Selyer str (£, Vy,y) then follows
by global duality similarly as in the proof of Theorem 5.5.1; and since by Lemma 3.1.2, for j > r the latter
group agrees with Selgk (K, V¢, ), this yields the result. O



52 F.CASTELLA AND K.T.DO

6.6. On the Iwasawa main conjecture. Writing any anticyclotomic Hecke character x of K as x = x;-
Xw as in §5.5, we let .ZPBDP (f/K, x) denote the image of .,SﬂpBDp(f/K7 Xt) under the twisting homomorphism
twy,, : L, [Wa] ®z, O — Z [Wa] @z, O given by Wa = xu(y-)(1 + W2) — 1.

Our next application is to the Iwasawa—Greenberg main conjecture for prDP( f/K,x).

Theorem 6.6.1. Let the hypotheses be an in Theorem 6.5.1, and assume in addition that f has big image.
Then Selser vl (K, A y) is cotorsion over Ay, and we have the divisibility

chary  (Selur st (K. Afo)¥) O (LPPP(f/K. X))
mn A;{,ur Rz, Q.
Proof. Repeating the argument in the proof of Theorem 5.5.1, we arrive at the equality
Katz,— g o _ ’ BDP
(617) ﬁpvéf 'L0g57(f*7§*755)(I‘ebp(KIQ(f,g,hQ)))(WQ) =+tw gp (f/Ka Xt)(WQ)a
with w' is a unit in Z2[W>] ®z, Ly. Since PP (f/K, x¢)(W2) is nonzero by Theorem 6.1.1, letting
ka(f*, 8%, h3) € Selord,ora (K, T (1 — 1) ® x; " U0

be as in the proof of Theorem 6.5.1, from (6.17) we conclude that s (f*,§*, hs) is non-torsion.

Since tw 1 (k2(f*,g*, h3)) is the bottom class of the Euler system {zy,y m }n for T, constructed in
Theorem 2.4.2, from Theorem 3.3.3 we deduce that Selord ord (K, T,y ) and Xord,ord (K, A ) have both
A -rank one, and we have the divisibility

Selord,ord (K, T, ?
(618) CharAI—( (Xord,ord(K7 Af,x)tors) D) CharA;( ( 4, d( f’X) )))

Ay ~tWX;1(/<;2(f*,§*, h3
in Ax. Since from (6.17) we deduce an explicit reciprocity law relating
I'eSf,(tWX;I(FCQ(f*7g*, h3)))

to twy,, (ZPPY(f/K,x1)) = £ PF (f/K, X), the result now follows from (6.18) and global duality by the
same argument as in [BCK21, Thm. 5.1]. O

Remark 6.6.2. Note that Theorem 6.6.1 also yields a proof of a divisibility towards the Perrin-Riou main
conjecture for generalised Heegner cycles formulated in [LV19] (see [BCK21, Thm. 5.2] for the argument),
removing some of the hypotheses in the main result of [LV19].

6.7. On the Bloch—Kato conjecture in rank 1. We can also give an analogue of Theorem 5.7.1 in the
indefinite case.

Theorem 6.7.1. Let the hypotheses be as in Theorem 6.5.1. If0 < j < r (which implies L(f /K, x,r) =0),
then
dimLm SelBK(K, Vf&() > 1.

Moreover, there exists a class °zy, € Selgk (K, V) such that
‘2px #0 = dimp, Selpk (K, Vi, ) = 1.
Proof. The proof of Theorem 6.6.1 showed that the class
“zf = twW, 1 (52(f*, 6%, h3)) € Selord.ora (K2, Tr.)
is non-torsion over Ax. On the other hand, one readily checks that the natural map
(6.19) Selord,ord (Ko, Tr )/ (7= — 1)Selord,ord (Ko, T,y ) = Selord,ord (I, T y)

is injective. Thus we conclude that Selord ora (K, T's ) has positive O-rank, which together with Lemma 3.1.2
yields the first part of the theorem. Letting ®zs\ € Selord ora (K, Tt,y) be the image of °z; , under (6.19),
the last claim follows from Theorem 3.3.1. (]
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